

Application Notes for CGATS.20 (PPML/VDX)
Version 1 — August 2004

Prepared by:

CGATS

The Committee for Graphic Arts Technologies Standards

© NPES 2004

All rights reserved.

NPES The Association for Suppliers of Printing, Publishing and Converting Technologies
1899 Preston White Drive
Reston, VA 20191-4367
USA
Tel: 703-264-7200
Fax: 703-620-0994
E-mail: standards@npes.org

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved iii

Contents Page

Prepared by: .. iii
1 Introduction ... 1
1.1 References ... 1
1.2 Symbols, notations, and abbreviated terms ..1
1.3 Why PPML/VDX? ... 2
1.4 How is this vision to be achieved?.. 3
1.5 The state of the art today.. 3
1.6 How does PPML/VDX differ from PPML?..3
1.7 Structure promotes efficiency ... 4
1.8 Exchange and data reliability... 5
2 VDP Jobs and Workflows Using PPML/VDX .. 6
2.1 Types of VDP workflow... 6
2.2 VDP jobs... 6
2.3 Workflow .. 8
2.4 Workflow design objectives... 13
2.5 Reliability and liability management ... 13
2.6 Recurring and one-off (on-demand) VDP workflows... 14
2.7 Workflow efficiency and cost balance for target print volume and job complexity..................... 15
2.8 Color fidelity and graphical complexity management... 15
2.9 Robust digital asset management... 16
3 Structure of a PPML/VDX Instance.. 18
3.1 Single file PPML/VDX instance .. 18
3.2 Multiple file PPML/VDX instance ... 18
3.3 Use of the ContentBindingTable ... 18
3.4 Point of entry ... 20
4 Preflighting PPML/VDX instances ... 21
4.1 Overview .. 21
4.2 Gathering information and verifying the PPML/VDX XML data.. 21
4.3 Verifying the PPML/VDX instance data ... 22
4.4 Closure assertion and confirmation.. 23
4.5 Overview of the closure process... 23
4.6 Implications of Strict and Relaxed conformance on preflighting .. 23
5 Validating a PPML/VDX Instance ... 25
5.1 Overview .. 25
5.2 Resolving references to PPML/VDX-Content files... 25
5.3 Determining file set completeness and correctness... 26
5.4 Validating Strict PPML/VDX instances.. 27
5.5 Validating Relaxed PPML/VDX instances ... 27
5.6 Validation of XML data.. 28
5.7 Determining color correctness .. 28
6 Cropping and trimming... 29
7 Use of JDF product intent .. 30
7.1 Linking PPML data with JDF Product Intent data .. 32
7.2 Inline JDF Intent - Referring to JDF product intent resource data from PPML data 33
7.3 Recommended use of the PPML hierarchy in PPML/VDX for complex jobs 44
7.4 Aggregating multiple recipient components in a single PPML/VDX instance.............................. 44
Annex A Converting PPML/VDX instances to PPML file sets... 47

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 1

Application Notes for CGATS.20 (PPML/VDX)

1 Introduction

These application notes discuss topics that aid implementers of PPML/VDX workflow tools and demonstrate the
various design features of the PPML/VDX file format. Topics also include preflighting PPML/VDX instances.
Annex A details the steps of converting a conforming PPML/VDX instance to a scheme more oriented towards a
PPML type of consumer interface.

This document is intended to supplement CGATS.20-2002, Graphic Technology – Variable printing data
exchange using PPML and PDF (PPML/VDX). It is assumed that a reader of this application note is familiar
with the PPML/VDX standard, as well as the PDF, PDF/X, PPML, and JDF data formats.

To anyone who acknowledges that these application notes are provided “AS IS”, WITH NO EXPRESSED OR
IMPLIED WARRANTY: permission to use, copy and distribute them for any purpose is hereby granted without
fee, provided that the contents of these notes are not altered, including the NPES copyright notice tag. Neither
NPES nor CGATS makes any claims or representations about the completeness of these application notes.

These application notes are subject to revision and enhancement. The most current version of this document
can be found in the NPES standards workroom at <http://www.npes.org/standards/tools.html>.

Some earlier revisions may be maintained at the same site. Comments and suggestions should be sent to the
CGATS secretariat at standards@npes.org.

1.1 References

Adobe Portable Document Format Reference Manual -Version 1.3, Dated 11-March-1999, Adobe Systems
Incorporated

ANSI CGATS.20-2002, Graphic Technology – Variable printing data exchange using PPML and PDF
(PPML/VDX), American National Standards Institute, available from NPES The Association for Suppliers of
Printing, Publishing and Converting Technologies, http://www.npes.org/standards/workroom.html

JDF Specification – Release 1.1 Revision A, http://www.cip4.org/ – September 2002

PPML Functional Specification – Version 2.0, Dated 27-March-2002, Print On Demand Initiative (PODi)

1.2 Symbols, notations, and abbreviated terms

PDF operators, PDF keywords, the names of keys in PDF dictionaries, and other predefined names are written
in a bold sans serif type font.

Operands of PDF operators or values of dictionary keys are written in an italic sans serif font.

Names of PPML and JDF elements are written in a bold sans serif font.

Attribute names of PPML and JDF elements are written in a bold italic sans serif font.

Values of attributes of PPML and JDF elements are written in an italic sans serif font.

dorf
Sticky Note
NOTE: CGATS.20 and ISO 16612-1 (PPML/VDX) have both been superseded by the ISO 16612-2:2010 (PDF/VT-1 and -2) and 16612-3:2020 (PDF/VT-3) standards which have been more broadly adopted by variable data print (VDP) solution vendors and users. It is highly recommended that implementors of VDP solutions presently or considering supporting PPML/VDX implement equivalent support for PDF/VT instead.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

2 © NPES 2004 All rights reserved

The term PDF specification refers to the Adobe Portable Document Format Reference Manual (see 1.1).

The term PPML specification refers to the PPML Functional Specification (see 1.1).

The terms PPML/VDX, CGATS.20, or PPML/VDX Standard refers to ANSI CGATS.20-2002, Graphic
Technology – Variable printing data exchange using PPML and PDF (PPML/VDX) (see 1.1).

The term JDF specification refers to the JDF Specification (see 1.1).

1.3 Why PPML/VDX?

ANSI CGATS.20 (PPML/VDX) defines a variable-data printing (VDP) structured document file format.

Unlike the many VDP page description language (PDL) file formats available and in use today, PPML/VDX is
designed to convey graphical page content as well as product intent (a description of the finished print products
to be manufactured), in a way that is both production-device independent and indifferent to any target print-
production workflow. In color reproduction, production-device independence is achieved through use of
intermediate reference printing conditions or reference color characterizations.

The PPML/VDX standard was developed to facilitate several different objectives:

• the effective creation of variable-data print jobs without requiring the authoring system to target the jobs
to specific equipment;

• the ability to target variable-data print jobs to a variety of output devices and/or printing companies; and

• the integration of all required data to enable color management.

PPML/VDX uniquely satisfies the requirements of guaranteed portability, page independence and device
independence, and thus provides a new opportunity in variable digital printing that decouples the complex
activities of VDP job authoring from the methods of print production and fulfillment.

The PPML/VDX standard was developed to satisfy the requirements necessary to enable this decoupling in a
robust way. It allows the VDP data originator to maintain control over the quality of the VDP content data and
print-product definition throughout its distribution into, and within, print production environments. PPML/VDX
provides the business and contractual footing for variable jobs that has been expected for traditional commercial
print work.

PPML/VDX can be used for exchange of VDP page data between disparate authoring and production workflow
environments without the need for supplemental technical communication. This is referred to as "blind
exchange."

PPML/VDX can also be used as a working format within a single, loose or tightly integrated authoring and
production workflow environment, much the way a significant amount of VDP is done today.

This flexibility allows implementation of advanced job-ticket-based VDP workflows, leading to new business
models and practices beyond what can be achieved today within the confines of wholly integrated authoring and
production workflows.

In current VDP practices, the content creator and print producer negotiate each aspect of each job and reach
contractual agreements that specify use of certain output devices. In the emerging arena of commercial
variable-digital printing, creators will expect the freedom to send jobs to any of a number of printers with the
necessary fulfillment-verification mechanisms in place.

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 3

Using PPML/VDX and the emerging JDF job-ticket standard, the content creator will be able to divide each job
among several print producers, and still be assured that output from each will exactly match the color and
quality of output from every other one.

1.4 How is this vision to be achieved?

PPML/VDX and JDF standards put the power to create, control and express intent for each part of every job
firmly into the hands of the content creator – the artist, ad agency, publisher or whomever.

The development of both PPML/VDX and JDF, together with ICC color management, enable creators to cross
the divide between themselves and those who output their creations on paper, and generalize the creation step
so that it can be reliably produced on any number of machines in any number of geographically separated
plants.

Though PPML/VDX enables all these benefits for blind exchange of variable jobs, it is equally useful in all
graphic arts variable-digital printing situations, even those performed entirely within a tightly integrated workflow
in which job creation and production occur within the same environment. Divorcing device-control information
from the original job content makes it easy to introduce new equipment into the workflow, or even upgrade from
one printing press or manufacturer to another – both of which are far from easy today.

1.5 The state of the art today

Most VDP systems require the VDP data authoring and composition system to immediately target the job’s
digital data to a very specific production workflow and printing device. In most cases, device control information,
or metadata, is commingled directly within the page description language data as a monolithic stream that can
only be consumed by a raster-image processor (RIP) sequentially from beginning to end.

Such formats also require the page composition system to specify page data as a fixed, streamed sequence of
pre-imposed sheet surface layouts. From an historic perspective, monolithic streaming approaches were indeed
warranted given the limitations of computing platforms in which memory was expensive, data-transmission
bandwidth was limited, and page buffering was to be avoided due to excessive cost.

This is no longer an issue, as high performance computing platforms – with significantly more storage capacity
and data transmission bandwidth – enable VDP tools to concentrate more on workflow enablement and content
management.

The center of effort for VDP job creation and production can now shift from concern for press productivity and
RIP optimization toward enabling and empowering the VDP page producer. The continuing improvement in
color digital printing devices and the general availability of off-the-shelf, high-performance computing and data
storage platforms brings a practical opportunity for efficient production of high-quality, full-color VDP output.

These increasing capacities lead to substantial demand for new sources of high-quality VDP jobs. Sources of
VDP jobs will include creative design agencies, advertising agencies and corporate marketing departments, thus
moving well beyond the earlier paradigm in which print providers themselves were effectively forced to become
advertising and marketing agencies in order to increase VDP page volume on their digital presses.

1.6 How does PPML/VDX differ from PPML?

PPML/VDX is based on a subset of PPML, as published by PODi, with the following additions:

• a manifest (the content-binding table) that specifies all the components needed to complete the job;

• use of JDF syntax to express the creator’s intent within the PPML/VDX job specification;

• color-management through the use of PDF/X for content data.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

4 © NPES 2004 All rights reserved

The restrictions on PPML include:

• the removal of PPML elements that assume certain device characteristics;

• the required use of PDF/X for content (the “relaxed” conformance level does allow use of use of
conventional PDF);

• disallowance of in-line content, including text or graphics.

These features and restrictions enable:

• page producers to work independently of the print provider, with no sacrifice of complexity or graphical
richness;

• late-stage targeting at one or more printing devices from within the production workflow;

• a reader-order sequence of independent pages, with no implied print production ordering.

Print production information such as imposition layout, sheet marks, page distribution scheme, and printing
device parameterization is internal to the print provider, and is usually specified in job-ticket data outside of the
PPML/VDX data. In the context of the print-production process, the PPML/VDX page data is thought of as the
content resource to the print job.

Alternatively, PPML/VDX can also be used in production workflows in which the VDP page composition system
also generates production parameters encoded internally as a job ticket. In this more integrated approach, it
becomes the responsibility of a workflow’s intelligent composition system to provide some or all of the job
ticket’s process parameterization.

Despite these differences, a PPML/VDX job can be easily transformed into a form that can be consumed by any
PPML-compliant device capable of processing PDF/X content references from EXTERNAL_DATA_ARRAY
elements.

1.7 Structure promotes efficiency

In VDP applications, the structure of the VDP data format used must be such that it enables consuming
applications and devices, such as workflow tools and digital printer raster image processors (RIP), to perform at
or above the rated speed of the digital printer. In the past this has been accomplished through the use of
proprietary PDLs optimized for use by a particular vendor’s printer front-end hardware.

PPML/VDX also incorporates features for enabling RIP efficiency.

The ability to target a PPML/VDX job late in a production workflow places additional requirements on the
structure of the PPML/VDX data. These requirements include the need to guarantee page independence and
efficiency of access to each PPML page definition and its associated PDL content data.

This is necessary in order to guarantee page re-ordering efficiency in preparation for print production, since the
order in which pages are utilized on a sequence of imposed sheets (printer spreads) is almost always different
from the reader order in which the PPML/VDX data specifies them.

Other VDP PDLs, which combine layout information with actual content data, do not enforce page
independence and usually cannot be efficiently parsed and manipulated as required by an imposition processor.
For this reason, embedding graphical content data in the data stream using PPML’s INTERNAL_DATA element
is prohibited by the PPML/VDX standard. For similar reasons, PDF was selected as the only format for graphical
content data in PPML/VDX.

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 5

Separation of the VDP authoring and print production processes in support of blind exchanges, as enabled by
PPML/VDX, is empowered by the standard in the area of job-liability management. This includes the ability of
the receiver of the exchanged data to reliably determine completeness of the exchanged job data.

Of course, PPML/VDX also satisfies all of the reliability requirements for use within more integrated, application-
specific production workflows, including both high- and low-volume workflows involving any level of verification
automation and design complexity.

1.8 Exchange and data reliability

The essence of PPML/VDX is data reliability. Because PPML/VDX utilizes PDF data as its exclusive content-file
format, the PPML/VDX interface for prepress tools and printing devices is consistent and well defined.

CGATS SC6 TF2 (the committee that developed CGATS.20) believes that a strict-conforming PPML/VDX job
has a greater potential for cross-platform portability and operating-environment interoperability than any other
open VDP file format available today. There is also greater potential for improved performance, workflow
flexibility, and creative expression – graphical content complexity. The exclusive use of PDF data for page-
content data has the important benefit of allowing workflow-tool vendors and users to leverage many existing
PDF prepress tools, such as off-the-shelf PDF preflight tools.

During the course of job processing, there will likely be a number of tools or processes through which the job will
progress, involving a number of senders and receivers. As an example, a client sends a job to a printing firm for
production. In the print production workflow, the PPML/VDX instance remains intact as it proceeds through the
various prepress, press, and post-press stages of a print-production workflow.

Interpretation of a PPML/VDX instance is stateless and has no dependence on any other instance. As instances
proceed through a given production process, run-state independence ensures that execution of any particular
instance by a process or printing device is not affected by the execution of any prior instances through that
same process.

The state of a process is affected only by the current instance’s job ticket. For this reason, the use of the Global
value for the Scope attribute of the OCCURRENCE element in the PPML data is prohibited by the PPML/VDX
standard.

Although one of the goals for the standard is to facilitate blind-exchange workflows, PPML/VDX also
incorporates the ability to handle numerous other types of exchanges and workflows.

For example, in tightly coupled workflows and trusted exchanges, PPML/VDX-Content files may be reused
among multiple PPML/VDX instances supplied by a client. In such a case, neither retransmission nor repeated
revision checking of the pre-exchanged PPML/VDX-Content files is required, and the use of the MD5
checksums present in the Binding elements of the ContentBindingTable ensures such exchanges are reliable.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

6 © NPES 2004 All rights reserved

2 VDP Jobs and Workflows Using PPML/VDX

PPML/VDX is a page content format. The bulk of this application note is focused on PPML/VDX as a page
content format. In this section, a JDF workflow context is used as the framework for describing PPML/VDX job
processing.

As with traditional static print workflows, there is no single VDP workflow that can be defined to accommodate
the production of all possible VDP applications. In fact, many different workflows and devices may be used in
the production of a PPML/VDX job resulting in the manufacturing of the exact same VDP products. Figures 1 – 4
provide a graphical overview of possible PPML/VDX workflows.

2.1 Types of VDP workflow

VDP workflows can be differentiated based on the level of integration between the authoring system and the
production system:

• Highly integrated workflows where the VDP content data itself is generated within the same
environment as the consuming production workflow, and the composition engine has a-priori knowledge
of production processes and all devices. See Figures 1 and 2.

• Non-integrated, open exchange workflows where the VDP content data is late stage targeted at a
printing device(s) and postpress workflow. In this step a manual or automated workflow planning and
prepress phase is required. See Figures 3 and 4.

• Semi-Integrated partial exchange where the VDP content is created in a different environment from
the consuming production workflow, yet the content creator takes advantage of resources already at the
production site. Note that this workflow is architecturally the same as the non-integrated, open exchange
workflow shown in Figures 3 and 4.

PPML/VDX is suitable as a VDP content format for all of these types of VDP workflows. It is important to note
that in these workflows the functions of authoring, production planning and production management differ as a
function of the workflow architecture. Differences are noted in the following figures.

2.2 VDP jobs

A VDP job involves the production, on behalf of a given sender in a specific timeframe, of a set of print products
where each product contains at least one unique component per recipient. As with any kind of print, a
PPML/VDX job, in general, involves the steps of content authoring, digital asset transfer, production planning,
and managing the activities of prepress, press, and post press phases.

For each individual recipient represented in the VDP job, a complete description is provided for each finished
piece as well as the definition of the custom page content of each finished page surface of each piece.

Once a production contract is instantiated, a print production workflow is devised by a production planning
system. The workflow plan usually involves the use of one or more RIPs and digital printers, as well as the
finishing devices used in a production sequence. The activities of each device are considered production steps,
or phases, in the execution of the VDP job. The term Job, however, is often used in the context of an individual
device’s participation in the workflow. In the context of this document, the term VDP job includes the definition
and execution of all steps in the manufacturing process, and its definition includes all required data resources
such as page content data.

A PPML/VDX job definition initially comprises the PPML/VDX instance data that includes the variable page
content and optional JDF product intent data (stored within the PPMLVDX/ProductIntent element). Alternatively,

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 7

a separate referential JDF product job ticket may accompany the PPML/VDX instance data where this JDF job
ticket will contain a RunList resource that refers to the PPML/VDX-Layout file as the source of page data.
Although different from the inferential (TICKET_REF) use of JDF as specified in the PPML/VDX Standard, this
is another way of specifying a JDF product intent job ticket in accordance with the JDF specification that is
similar to how JDF is used to specify product intent for static jobs.

A production workflow that accomplishes the manufacture of the VDP products is then determined. In a JDF job
ticket managed production workflow, a JDF process job ticket is created and one or more JDF process nodes
that model the workflow and devices utilized in the production workflow are added, as shown in the Production
Planning portions in the following figures. It is the resulting JDF job ticket that embodies the complete production
definition of the job (the JDF process nodes are usually added to the JDF product intent job ticket in the case
where a JDF product intent job ticket already exists).

The CIP4 Digital Printing Working Group has developed extensions to the Job Definition Format (JDF)
Specification that permits referential linkage of JDF product intent and process job ticket data to structured
document formats characterized as MultiSet (RunList/LayoutElement/@ElementType=MultiSet) such as
those based on PPML data, PODi is finalizing a specification known as Digital Print Ticket (DPT) version 2.0
based on this linkage method developed by the CIP4 Digital Printing Working Group.

One or more JDF process nodes that describe imposition layout, RIPping, and digital printing, must have at
least one input RunList resource that refers to the PPML/VDX-Layout file as the source for page content data.
This assumes the printing system is receiving reader pages rather than pre-flattened imposed sheet-surface
descriptions. Although possible in a workflow, design phase flattening reader pages into sheet surface layouts in
most cases is sub-optimal in a job ticketed workflow because sheet marks applied during design are opaque to
the production management system and the job cannot be easily retargeted to an alternate production process.

See 7.2.1 for a description of page, panel, and sheet.

Legend for Figures 2 and 4:

• Solid bold lines indicate transfer of PPML/VDX - Layout file.
• Dashed bold lines show transfer of PPML/VDX content files.
• Dotted lines indicate directional references to PPML/VDX -Content files from within the PPML/VDX -

Layout file.
• Solid lines indicate access and use of related data.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

8 © NPES 2004 All rights reserved

2.3 Workflow

Figure 1 — Highly integrated workflow

PPML/VDX instance data

Prepress Postpress Press

Job Production Specification (i.e. JDF Process Job Ticket)

Finished Print
Products

Available Devices
(device capabilities) PPML/VDX Authoring

(composition engine)
Production Planning

Production Management System
(run job)

Authoring defines PPML/VDX instance:
• PDF content element data
• page layouts with content element

data linkages
generated using an authoring tool and rule
based composition engine.

Production Planning determines:
• prepress, press, and postpress process

requirements
• sampling strategies for each phase of

production
• scheduled use of production devices
• closure of PPML/VDX instance data
• media selection

Production Management System
manages execution of JDF process job
ticket:

• recipient instance tracking and
recovery

• pagination of sheet surface
images from assembled PPML
pages (may be built into PPML
page content)

• RIPping sheet definitions
• proofing process

• printing

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 9

Figure 2 — VDX data asset management in a highly integrated workflow

Integrated Authoring Production Environment

Production Management System

Production Planning

Local

PPML/VDX
Layout Files

PPML/VDX - Layout

 JDF Process JT

Binding/@Src=”File:….pdf”

PPML/VDX
Authoring
(Composition
Engine)

Recipient
Database

Composition
Rules

PDF
Assets

(PPML/VDX
Content files)

Binding/@Src=”File:….pdf”

PPML/VDX - Layout

Local File transfer

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

10 © NPES 2004 All rights reserved

Figure 3 — Non- and semi-integrated exchange workflow

PPML/VDX Authoring
(composition engine)

Production Planning

Production Management System
(run job)

Finished Print
Products

Available devices
(device capabilities)

PPML/VDX data and JDF Product
intent definition

Production Management
System manages execution of
JDF process job ticket:

• recipient instance
tracking and recovery

• pagination of sheet
surface images from
assembled PPML
pages

• RIPping sheet
definitions

• proofing process
• printing
• finishing

Based on product intent, Production
Planning determines:

• prepress, press, and
postpress process
requirements

• sampling strategies for
each phase of production

• scheduled use of
production devices

• closure of PPML/VDX
instance data

• media selection

Authoring defines
PPML/VDX instance:

• Product Intent
• PDF content element

data
• page layouts with

content element data
linkages

generated using an authoring
tool and rule based
composition engine.

Prepress Postpress Press

Job Production Specification (i.e. JDF Process Job Ticket)

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 11

Figure 4 — VDX data asset management in a non-integrated workflow

Authoring Environment

Production Management System

Production
Planning

Local Assets
PPML/VDX
Content files

Local File transfer

Local File transfer

 JDF Process JT

Production Environment

PDF
Assets

(PPML/VDX
Content files)

Remote file transfer –
Pulled PPML/VDX –Content files

Localized
PPML/VDX
Layout Files

Transfer / Localize Job

PPML/VDX - Layout

Binding/@LocalSrc=”File:….pdf”

JDF Product Intent +
PPML/VDX -Layout

Binding/@Src=”http:….pdf”

Transfer, localize, and closure verification of PPML/|VDX instance data.

Production Planning
determines prepress,
press, and postpress
process requirements as
shown in Figure 3,
except for the transfer,
localization, and closure
operations performed by
the Transfer/Localize
Job process.

Production Management System
can include a pre-processing
composition engine followed by
a RIP, -or- an integrated
composition engine and RIP.

Recipient
Database

Composition
Rules

PPML/VDX
Authoring
(Composition
Engine)

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

12 © NPES 2004 All rights reserved

Prepress involves all activities associated with mapping reader pages defined in the PPML/VDX instance to the
surfaces of a sequence of printed sheets of varying media styles. As with static production workflows, an
imposed sheet may contain various static sheet marks such as slug lines, and color control bars, as well as fold
and trim marks. Sheets printed from VDP jobs often include dynamic sheet marks such as barcodes that identify
printed sheets and their sequence relationship to a set of sheets that belong to a particular recipient. The
specification of the imposed sheet layout, including the composition and placement of all static and dynamic
sheet marks, is usually specific to the off-line and/or near-line postpress finishing device(s) utilized in the target
production workflow.

Printing of the recipient instances occurs in the press phase of the workflow and results in one or more stacks of
sheet sets where each set belongs to a particular recipient. The quantity of printed sheets comprising each set
may vary from set to set depending upon the number of variable pages the PPML/VDX data specifies for each
recipient. Digital printing systems that operate in job ticketed workflows must therefore have the capability of
consuming reader ordered VDP content pages conveyed in a PPML/VDX instance and generating imposed
printer order sheets from instructions provided in the job ticket (i.e. JDF job ticket).

In order for a postpress off-line or near-line finishing device to discriminate sheet-set breaks and perform the
finishing operation on the set of sheets belonging to the same recipient, the finishing machine must often scan
and interpret barcode marks present on the sheets loaded in its feeder. Conceptually, the barcode marks
imaged on the sheets links to the information present in the structure of PPML/VDX data that signals the reader
page groupings for a given recipient instance. Other dynamic barcode marks may also be present on the printed
sheets that are used by finishing machines to signal insertion of pre-printed matter into a given sheet set prior to
folding, binding, and/or envelope insertion.

In general, most all sheet marks imaged onto sheet surfaces, other than the page content data, are workflow
device dependent. This means that determination of static and dynamic sheet marks can only be accomplished
with a priori knowledge of the production workflow configuration and control requirements of the finishing
machines utilized. It is for this reason that a prepress step (manual or automatic) is required for utilizing
PPML/VDX data in a production workflow.

For finishing machines that are JDF-job-ticket controllable and near-line connected to a production management
system (i.e. network connected but unattached paper path) for use in more automated workflows, it may be
necessary for the production management system or the digital printing system itself to covey in the JDF job
ticket a description of the sheet layout. In a JDF-controlled workflow, the JDF job ticket data is used to preset
the finishing device’s configuration to accept and properly process the input stack of printed sheets. For
example, sheet-layout characterization data may be conveyed in the output Component resource of the JDF
digital printing process node (refer to the JDF Specification for details).

The benefit of a VDP workflow utilizing PPML/VDX with JDF is that the authoring system is able to remain
decoupled from the production processes. The author is not required to possess knowledge of the
manufacturing processes employed in the production workflow (i.e. knowledge of sheet imposition layout
details). As can be seen from the preceding discussion, this approach requires the receiving production
environment to have a prepress system that allows for the definition of appropriate process controls based on
received intent information. Then the resulting process controls can be embodied in a JDF process job ticket.
Alternatively, the prepress system can re-write the PPML data of PPML/VDX instances with the imposition
layout for the target processes included.

A common VDP workflow environment assumes a close linkage between VDP authoring and VDP production
workflows. PPML/VDX can be applied in this workflow as well. The pages of a PPML/VDX file, for example, can
define a print order sequence of imposed impressions. In this case, the reader pages generated by the
composition engine are already distributed into printer spreads compatible with particular printing, binding, and
finishing processes. PPML data of such a PPML/VDX instance would not contain TICKET_REF elements used
to indicate intent, because the intent and process requirements are already implicit in the job content. This
usually implies the use of a manual means of conveying device control semantics.

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 13

Use of JDF is described in various areas of this document due to its rapid adoption by printing and finishing
equipment manufacturers, and production workflow management system vendors, but PPML/VDX can function
in numerous other workflow environments.

2.4 Workflow design objectives

The choice of workflow used in the production of a PPML/VDX job (or VDP job in general) is influenced by many
factors including:

• Reliability and liability management

• Scalability to accommodate one-off or recurring jobs (i.e. same workflow but with different PPML/VDX
data) on a routine basis

• Workflow efficiency and cost balance for target print volume and job complexity (run length)

• Color fidelity and graphical complexity management

• Robust digital asset management

2.5 Reliability and liability management

It is very often the case that regardless of VDP job classification, the expectation of the print customer is that
exactly one print product is manufactured for each recipient – no more, no less. This requires that all printed
components be tracked, commensurate with the business rules of the print contract.

In many cases the print client prefers to maintain absolute control of the page content and appearance of the
job’s variable page data. This data includes any digital assets in the form of PPML/VDX-Content files exchanged
with the print provider as well as access to the database of intended recipients used in the creation of a
PPML/VDX instance. Ideally, the database itself should not be exchanged to the print provider, and all
necessary data should be included in the PPML/VDX instance’s PDF/X files.

A reliable workflow begins with a complete exchange of all data comprising the PPML/VDX instance and the
ability to rigorously verify that all required data components are present and under the control of the production
system. These processes are known as PPML/VDX data transfer and closure verification (see section 4.3).

It is important to note that closure verification of a PPML/VDX instance may occur again at various points in the
production workflow – even within the digital printing device itself. In many cases, printed component-level
verification is performed within near-line or off-line finishing devices as well. This usually requires the use of
barcodes printed outside the finished page content area of the printed sheets.

Once PPML/VDX data is exchanged and verified for closure, maintaining the integrity of the graphical data
becomes the responsibility of the receiver, who must guarantee that the printed result exactly matches the
expectation of the creator. For this to happen, the content data must conform to PPML/VDX-Strict. This level of
conformance guarantees the receiver of the job that all data belonging to it is device independent and can be
verified for closure.

PPML/VDX-Strict conformance requires all PDF data to conform to the PDF/X-1a or PDF/X-3 standards. This
means that all color content data is prepared for a single characterized printing condition. Additionally, positive
binding metadata is required where all Binding element references in the ContentBindingTable shall have
both a UniqueID and MD5_Checksum present, so that the receiver can reliably verify closure of the exchanged
data set.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

14 © NPES 2004 All rights reserved

Depending upon the established level of trust between the sender and receiver, it is selectively possible to relax
the degree to which all data in a PPML/VDX instance must be fully defined and verifiable (e.g. use of unique IDs
and checksums). The PPML/VDX-Relaxed conformance level is available for exactly this purpose. Relaxation
will normally be done when sender and receiver have an on-going working relationship.

PPML/VDX-Relaxed conformance permits PDF data that does not conform to PDF/X-1a or PDF/X-3 to be
included in a PPML/VDX instance. Use of the UniqueID and MD5_Checksum attributes of
ContentBindingTable/Binding elements are optional. Relaxing the requirements that UniqueID and
MD5_Checksum attributes be included enables workflows that permit late binding of PPML/VDX-Content data
to a PPML/VDX instance. PPML/VDX-Content files can therefore be created and exchanged after the
PPML/VDX-Layout file has already been exchanged and the absence of positive binding information will alert
the closure verification process of special verification requirements. For example, examination of the
ContentBindingTable and its sub-elements allows the receiver to determine the disposition of the data in terms
of device independence and reliability of binding references. It is possible for a PPML/VDX-Relaxed instance to
achieve a level of device independence and reliability equal to that of PPML/VDX-Strict conformance.

2.6 Recurring and one-off (on-demand) VDP workflows

There are essentially two fundamental paradigms for VDP workflow systems:

1. Workflow systems that are somewhat dedicated to accomplish a very specific VDP print application.
This is usually the case for most recurring VDP jobs.

2. Workflow systems that are very flexible and accommodate a wide variety of print jobs. In this case, the
production workflow may be configured in a quick and efficient manner, on a demand basis. Such
completely digital workflows are ideally job ticket controlled (i.e. JDF based).

Many VDP applications demand highly-integrated authoring and production workflows because they are high
volume, and require a high degree of reliability. Many transactional printing systems fall into this category. Such
specialized VDP authoring and production systems are carefully engineered to accomplish the manufacture of
only a very specific print application. As highly controlled and integrated systems, often with dedicated
equipment, they usually possess little flexibility for accommodating a mix of VDP job types at any one time. To
achieve a sufficient economy of scale for such dedicated VDP workflows so as to overcome large engineering
and dedicated equipment costs, these workflows are usually only used in the case of high volume, frequently
recurring VDP jobs. In general, recurring jobs vary only in aspects of printed content where the specification for
the finished print product is the same for each job.

On the other extreme are non-recurring, on-demand VDP jobs. In this paradigm, the print provider must be able
to construct a suitable VDP production workflow on an as needed, per job basis. The print provider is able to
accept many more smaller, possibly higher value, graphically rich VDP jobs and produce them without the need
for a costly workflow re-engineering procedure each time a completely new VDP job is to be produced. Ideally,
such an ad-hoc approach can be made scalable and page volume independent. Success in this paradigm
places a great deal of onus on interoperability of VDP content formats, job control, and a unification of device
interfaces - thus requiring standardization in many areas of the custom print authoring and manufacturing
process.

Until recently, on-demand VDP workflows have been uncommon due to the lack of standardization of various
production device interfaces – including VDP content formats. Constructing custom VDP workflows on the fly
has been seen as nearly impossible. Enter PPML/VDX and JDF – two complementary technologies which
together offer significant opportunity in the area of increased demand for VDP.

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 15

2.7 Workflow efficiency and cost balance for target print volume and job complexity

In many cases VDP jobs are considered long run – especially in cases where many thousands of recipients are
targeted in a single distribution. Such jobs are characterized as high-volume. In general, the higher the volume
of pages output from a job, the greater the need for production workflow automation. In many cases, high-
volume transactional jobs are highly automated in order to reduce human interaction. Often, high-volume
workflow automation requires auditing at various workflow stages in order to guarantee reliability. Imprinting of
barcode encoded audit information is commonly used for tracking printed components and detecting spoilage.

In the case of low-volume or short-run VDP jobs, reliability is as important, however page volume may be low
enough that complete automation throughout prepress, press, and postpress is not cost effective or necessary.

Large PPML/VDX jobs need not necessarily be produced in a single print run, and may even be produced in
separate production workflows at different times and at different locations. For example, there are cases when it
would be reasonable to segment the PPML/VDX instance into a discrete sequence of instances in order to
accomplish time shifted production runs or to produce the job in multiple parallel runs (using multiple printers) in
order to achieve sufficient output.

Workflow complexity increases when multiple job components are combined at various stages. For example,
offset printed shells may be used as the print medium for a VDP print run. Static and multiple VDP printed
materials may be assembled at finishing. Complex jobs may involve selective insertion of components from
other workflow steps to be included within the envelope that packages a recipient's job instance.

PPML/VDX is intended as a VDP content carrier for any of these scenarios while JDF job ticket manages the
workflow.

PPML/VDX instance as part of a larger JDF job context:

A JDF process job ticket may contain one or more digital printing process nodes that refer to PPML/VDX Layout
file(s) as page content resources.

An example of the steps involved may include:

1. The PPML/VDX authoring phase generates a PPML/VDX instance with JDF product intent description.

2. The PPML/VDX instance is exchanged into a production environment.

3. In the Production Planning phase of a JDF enabled production workflow system, the PPML/VDX data is
analyzed and a production workflow is defined.

4. The workflow process steps are specified by adding JDF process nodes to the JDF product intent job
ticket. This completes the JDF job ticket contains one or more JDF digital printing process nodes, each
of which contains a RunList resource that references one or more PPML/VDX-Layout files.

This JDF process job ticket now represents the VDP job product intent definition and the JDF processing
instructions for manufacturing the job. Such use of PPML/VDX with a referential JDF process job ticket requires
a particular structuring of the PPML data as specified in section 7.0. This JDF approach is consistent with the
use of JDF as defined by the JDF Specification where the digital printing device executing a JDF process node
ignores any TICKET_REF elements present in the PPML data.

2.8 Color fidelity and graphical complexity management

PPML/VDX provides mechanisms for the integration of all required data to permit effective process control and
color management

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

16 © NPES 2004 All rights reserved

Unambiguously defined color is a critical aspect of PPML/VDX flexibility. Key mechanisms are available within
strictly conforming PPML/VDX, when the Binding element IntendedColor attribute is set True, to provide these
capabilities with respect to color:

• Strictly conforming VDX restricts content data to either PDF/X-1a or PDF/X-3.

• PDF/X-1a and PDF/X-3 files contain ICC color management metadata

Care is required in achieving correctly created PDF/X-1a and PDF/X-3. Hence, “provides the mechanisms”
should not be read as “PPML/VDX does it for you.”

PDF/X-1a files, by definition, have been color-rendered to a particular and well-defined printing condition, and
contain only CMYK and spot-color data. PDF/X-3 files, by definition, can contain three-component (e.g. RGB),
CMYK and spot-color data.

In both cases, all color PDF/X objects must be associated with a colorimetric source-color definition. These data
must also be targeted to a defined printing condition using included ICC color profiles, or pointers to
characterization data. Where multiple PDF/X content files are used, it is important to ensure that they all target
the same defined printing condition.

In addition to the reference printing conditions currently available on the ICC website, a suite of reference color
characterization data sets is being developed by CGATS SC6 TF2 specifically for digital printing machines.
These include large, intermediate, and small color gamut characterizations. The large gamut case corresponds
to the characterization for high gloss image characteristics; the intermediate gamut case corresponds to the low
gloss image characterization, and the small gamut case corresponds to ANSI CGATS TR 001. The two
Technical Reports under development are:

• CGATS TR 007 Graphic technology – Reference color characterization data for non-impact digital
printing – Grade 1 substrate (white point) and typically high gloss image characteristics

• CGATS TR 008 Graphic technology – Reference color characterization data for non-impact digital
printing – Grade 1 substrate (white point) and typically low gloss (satin) image characteristics

For any job, portability of color among digital printing machines is enabled via color re-targeting from the original
PDF/X output intent printing conditions.

A final point is necessary regarding effective color-management systems. Because PDF/X requires the use of
ICC-based color metadata, ICC color management mechanisms can be used for proofing and re-targeting.

This is a key distinction for strict PPML/VDX in comparison with other VDP formats. Postscript files and
untagged color files do not contain metadata to enable color-accurate proofing or re-targeting, which is a key
aspect of PPML/VDX portability.

However, it should be noted that “providing the mechanisms” is not sufficient to obtain controlled color. End-to-
end color-managed workflow processes are required to reap the available process-control benefit.

2.9 Robust digital asset management

Robust management of the digital assets comprising a PPML/VDX instance requires careful versioning control
and management of all URL references. For example, when a content element of a PPML/VDX instance is
changed for a particular use, other uses of that content element that are affected by the change must be
controlled in an explicit manner.

PPML/VDX works well in a content managed environment where a PPML/VDX instance can be created and
guaranteed complete throughout prepress processing using the attributes of the ContentBindingTable/Binding
elements. All components identified by the ContentBindingTable/Binding/@Src attributes can be gathered

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 17

into the local environment and verified as the exact version using the various verification attributes of each
ContentBindingTable/Binding element.

When PPML/VDX Content files are gathered into a local repository and processed for closure, the
ContentBindingTable element should be updated such that the LocalSrc attribute of each
ContentBindingTable/Binding element references the local copy of the PPML/VDX-Content file. The Src
attribute should always be left as a reference to the original copy of the PPML/VDX-Content file. The
ContentBindingTable/Binding/@MD5_Checksum and the ContentBindingTable/Binding/@UniqueID
(required in strict) attributes are available to verify closure when the job content data is transferred.

As a function of workflow design, and knowledge of the expected volatility of referenced digital assets, late-
stage content closure process, may re-verify all ContentBindingTable/Binding/@MD5_Checksum attributes
at any point.

In addition to closure verification, robust management of PPML/VDX digital assets requires persistence of the
verified PPML/VDX-Content files from the time that production is started to the time that the job is completely
finished and shipped. If any mid-production failure recovery is required, the job content can be ensured by
workflow processes to be available and consistent. Business factors may dictate that digital assets of
PPML/VDX instances persist indefinitely.

Use of particular content in a particular PPML/VDX instance can also be transitory, and can be managed for
robustness using careful coordination between the PPML/VDX data creator and the print provider. For example,
in certain VDP workflows a PPML/VDX-Layout file can be created and exchanged prior to the completion of all
dependent PPML/VDX-Content files. Such a PPML/VDX-Layout file can be received at a print provider before all
of the content located through the ContentBindingTable exists. In this case proper MD5_Checksum attributes
of ContentBindingTable/Binding elements cannot be specified but may be present and have a dummy
checksum values used as placeholders.

When a PPML/VDX instance’s ContentBindingTable/Binding/@Src URI reference cannot be resolved, or can
be resolved but has an invalid ContentBindingTable/Binding/@MD5_Checksum attribute value, that job
cannot be verified for closure. In this situation, an oversight scheduling process, such as a JDF MIS or prepress
management system, must manage the delayed closure verification processing for such a late binding job.
Separate notification of content availability (out of band to the exchange of the PPML VDX data) or delivery of
the late content to a specified ContentBindingTable/Binding/@LocalSrc location (local disk, file server, ftp
server, etc.) can trigger the final verification process to determine closure. When closure verification is triggered,
the immediate failure of the dummy checksum can trigger retrieval of the external
ContentBindingTable/Binding/@Src content and a correct MD5_Checksum attribute value. Alternatively, the
separately delivered content itself can include an MD5 checksum value that can be used to update the
CBT/Binding/@MD5_Checksum element. Acceptance of the referenced PPML/VDX-Content file as correct
therefore depends on business rules.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

18 © NPES 2004 All rights reserved

3 Structure of a PPML/VDX Instance

A PPML/VDX instance can be a single file, or multiple files. Which scheme of a PPML/VDX instance to use
depends entirely upon workflow and requirements of the data exchange.

3.1 Single file PPML/VDX instance

A single file PPML/VDX instance is comprised of a single PDF file known as the PPML/VDX-Layout file.
According to the PPML/VDX standard, this file should have a .vdx file name extension.

This special PDF file must contain a PDF stream object that contains the XML PPMLVDX element and is
referenced from an entry in the file’s catalog dictionary.

At the very least, this PPMLVDX element must contain a ContentBindingTable sub-element followed by a
Layout sub-element. It may also contain an optional ProductIntent element, which if present, must contain a
JDF sub-element or a JDFRef sub-element that is a reference to an XML file that contains a JDF element. This
JDF element must be a conforming JDF product intent node as defined by the JDF specification and further
restricted by the PPML/VDX standard.

The ContentBindingTable must contain a Self sub-element that has an Src attribute with a URI value that
matches the value of the Src attribute of all EXTERNAL_DATA_ARRAY elements present in the PPML data.

3.2 Multiple file PPML/VDX instance

There are several schemes of multiple file PPML/VDX instances. In general, most multi-file PPML/VDX
instances are comprised entirely of PDF files: exactly one PPML/VDX-Layout file, and one or more PPML/VDX-
Content (PDF) files.

The minimum requirements for the PPML/VDX-Layout file of a multi-file PPML/VDX instance are the same as
for a single file PPML/VDX instance (see the description under the previous heading).

The difference in this case lies in the definition of the ContentBindingTable where it must contain a single
Binding sub-element for each PPML/VDX-Content file included in the PPML/VDX instance. In general, the
ContentBindingTable is a manifest that exactly identifies the entire set of PPML/VDX-Content files that are
members of the PPML/VDX instance’s file set.

For each member PPML/VDX-Content file, a separate Binding element entry referencing it must be present in
the ContentBindingTable.

The ContentBindingTable in this case is not necessarily required to contain a Self sub-element. This is the
case where none of the PDF pages of the PPML/VDX-Layout file are used as compound elements referenced
from the PPML data.

3.3 Use of the ContentBindingTable

The ContentBindingTable is most useful with respect to multi-file PPML/VDX instances and has several
functional uses including:

1. Provides a complete manifest of dependent PPML/VDX-Content files. For each PPML/VDX-Content file
included in the PPML/VDX instance, a separate Binding sub-element must be present. Each Binding
sub-element must have an Src attribute present that is a URI that identifies a PPML/VDX-Content file.
This URI must be resolvable by a reader in the receiving environment. For each unique

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 19

EXTERNAL_DATA_ARRAY/@Src value there must be a corresponding Binding element entry in the
ContentBindingTable that has a matching Src URI value.

2. Provides optional meta-data used by a reader (receiver) to guarantee a positive binding of the
EXTERNAL_DATA_ARRAY/@Src to a PPML/VDX-Content file. This is important in the case where
the job must be tested for closure in a receiving environment. This requires use of the optional
UniqueID and/or MD5_Checksum attributes of a Binding element. If these attributes are present, a
tool responsible for closure determination must use them to verify that the PPML/VDX-Content file
resolved from the Binding/@Src attribute is indeed the correct file as intended by the sender.

• In the case of PPML/VDX-Strict conforming instance, both the UniqueID and MD5_Checksum
attributes must be present in each Binding element so that closure of the exchanged PPML/VDX
instance’s file set can be guaranteed.

• In the case of PPML/VDX-Relaxed they are optional and may be used as required by the exchange
agreement.

a. If the MD5_Checksum attribute is present, then the receiver of the data is obligated to
verify that the calculated MD5 checksum of the PPML/VDX-Content file resolved matches
the attribute’s value

i. If the calculated value doesn’t match, then the resolved PPML/VDX-Content file is
considered invalid

ii. Likewise, if the PPML/VDX Content file’s trailer dictionary doesn’t match, the
PPML/VDX-Content file is considered invalid

b. Depending upon the business terms under which the job is being produced, the invalid
PPML/VDX content file must either be corrected prior to job execution, or the entire
PPML/VDX instance rejected

3. Provides a URI translation for localized PPML/VDX-Content files. For workflows involving inter-
environment exchange, the Binding/@Src attribute may identify a PPML/VDX-Content file located on a
remote server, outside of the control of the production environment. To complete the exchange, it is
often desirable to resolve all Binding/@Src referenced files and copy them into the local environment if
a copy is not already present. Once copied, a Binding/@LocalSrc attribute must then be added to
each Binding element that refers to the local copy. This is the process of PPML/VDX data localization.
From a conforming PPML/VDX reader’s perspective, if the LocalSrc attribute is present, it must use that
URL to resolve the PPML/VDX-Content file reference, not the URI specified by the Src attribute. This
translation mechanism eliminates the need to update all of the EXTERNAL_DATA_ARRAY/@Src
attributes present in the PPML data. (See section 5.2.)

4. Provides an indication of the color reproduction expectations of the PPML/VDX data originator. A
Binding element has an optional IntendedColor attribute of type Boolean. If set to true, the referenced
PPML/VDX-Content file must conform to either the PDF/X-1a or PDF/X-3 standards. If the resolved file
is not appropriately conforming as indicated by this attribute, the PPML/VDX instance is considered
invalid, and depending upon the business terms under which the job is being produced, the invalid file
must either be corrected prior to job execution, or rejected.

The ContentBindingTable is a feature that is unique to PPML/VDX. PODi’s PPML and PPML/GA have no
equivalent capability. Therefore, a PPML consumer that also supports the PDF content format (i.e. one that
conforms to PPML/GA) has no native provision for remote to local URL translation. This means that it is
necessary to revise all EXTERNAL_DATA_ARRAY/@Src attributes to refer to the corresponding
Binding/LocalSrc prior to submission to such a consumer.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

20 © NPES 2004 All rights reserved

3.4 Point of entry

The PPML/VDX Layout file is the point of entry for a conforming reader.

A PPML/VDX reader uses the PPML/VDX Layout file for direct or indirect access to the PPML layout data as
well as the optional JDF product intent data all of which is stored within the PPMLVDX element.

A PPML reader uses the PPML element as the entry point of the jobs reader order page data, and the
ContentBindingTable to determine the manifest of required PPML/VDX Content files.

If JDF product intent data is present in the PPML/VDX instance as defined by the PPML/VDX standard,
interpretation of the JDF data is with respect to references pointing back at it from the TICKET_REF elements
within the PPML layout data.

If a PPML/VDX layout file is a component of a JDF process job ticket, then the JDF process job ticket is the
entry point. The PPML/VDX file is then considered a resource of the JDF job ticket. (See section 2.)

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 21

4 Preflighting PPML/VDX instances

4.1 Overview

In all workflows, an appropriate level of preflighting and validation of the PPML/VDX instance should occur
before it is committed for production. This application note discusses the steps involved in preflight for a
PPML/VDX instance – the steps that should be taken by these workflows to validate the instance. The ultimate
goal of these preflight steps is to ensure that an instance can be reliably expressed as a set of finished products.
This means that all files are present and verified as the intended versions, that color information is suitably
specified, and in general that the finished product can be produced to meet expectations for appearance and
production schedule.

In the graphic arts, preflight generally refers to the process of ensuring necessary resources are available to
assemble a document, as well as examining the document files to ensure that the documents to be generated
match, as closely as possible, the appearance expected by a customer or supplier. As the PPML/VDX format is
designed to facilitate blind exchange, the receiver of a PPML/VDX instance may assume that, if all required
resources for the instance are present, then the layout is as intended by the sender of the instance. Preflighting
a PPML/VDX instance is therefore restricted to checking that all required resources are present and can be
verified as ready for prepress and production.

A PPML/VDX instance need not be complete to begin preflight on portions of the instance. Files and resources
that are known to be present are eligible for validation, and it may be an advantage to preflight components of
an instance as early as possible so that, if a component is damaged or not as requested, this information can be
communicated back to the sender.

Nevertheless, a complete preflight should be carried out once all components are specified for and available to
the recipient. This is recommended to ensure that files have not become inaccessible or been replaced by
incorrect versions.

It is strongly recommended that all fonts used in a given content element be embedded (full or subset) in the
PDF document containing that content.

The recommended steps for complete preflight of a PPML/VDX instance are:

1) Gather information and verify the PPML/VDX XML data.

2) Verify that all referenced resources are present and correct, known as verifying closure for the
PPML/VDX instance including the presence of all required fonts.

3) For a PPML/VDX relaxed instance, if the instance is not closed, then closure may have to be managed
through interaction between sender and receiver.

Each of these is discussed in detail in the sections that follow.

4.2 Gathering information and verifying the PPML/VDX XML data

The process of preflighting a PPML/VDX instance varies depending on whether the instance is strict or relaxed.
Determination of whether the instance is strict or relaxed is therefore the first step in preflight.

To determine whether a PPML/VDX instance is strict or relaxed, retrieve the value of the
GTS_PPMLVDXConformance key from the PPML/VDX layout file’s Info dictionary. There are two valid values
for this key: (PPML/VDX-Strict:2002) and (PPML/VDX-Relaxed:2002). The former indicates that the PPML/VDX

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

22 © NPES 2004 All rights reserved

file set is a strict instance, and the latter indicates that it is a relaxed instance. A different value, including no
value, is an indication that the file is not a valid PPML/VDX layout file.

The XML in the PPMLVDX element should be validated against a schema to ensure that the PPMLVDX
element conforms to the requirements for a PPML/VDX instance. The schema for the PPMLVDX XML element
is given in section 7.

The PPML/VDX layout file contains the ContentBindingTable element (also referred to in this application note
as the content binding table) for the PPML/VDX instance as a sub-element of the PPMLVDX element. Although
the content binding table is able to contain validation information for all content files and external XML streams,
it cannot itself contain the information required for validating the PPML/VDX layout file, since the process of
including a checksum in the layout file would invalidate the checksum written to the file. The PPML/VDX
standard therefore does not mandate a scheme for validating this file. It is suggested, however, that a receiver
request an MD5 checksum for any PPML/VDX layout file accepted and compare this against the calculated
MD5 checksum for the received file. In this manner a recipient can have confidence in the fidelity of the layout
file.

Care must be taken during exchange of a PPML/VDX instance to ensure that inadvertent corruption of
components does not occur. The most common causes of file corruption during transmission are using ASCII
mode in an FTP client, as well as using other transmission agents that may substitute end-of-line (CR/LF)
character sequences based on the destination environment, such as network file sharing (NFS) clients.

It is imperative that FTP clients transmit PPML/VDX instance files using binary (image) mode exclusively to
prevent file checksum invalidation. NFS or other clients that cannot be instructed to suppress line ending or
other character substitution should be avoided. File corruption will cause a PPML/VDX consumer to calculate
checksums that do not match those entered in the content binding table by the producer prior to the exchange.

File corruption to PPML/VDX layout or content files is usually not repairable and will often require retransmission.

For XML data, however, corruption due to CR/LF substitution can be repaired if both the PPML/VDX sender and
receiver allow it. If replacement of line-ending characters in an XML file yields a checksum that matches that
calculated prior to the exchange, then it may be assumed that line ending substitution was the only corruption.
If the checksums do not match then additional corruption occurred during the exchange and the files must be
retransmitted.

4.3 Verifying the PPML/VDX instance data

A PPML/VDX instance is said to be closed when all content and layout data, as well as resources, are verified
as correctly received. Once a receiver has access to all resources for an instance, and all components have
been verified as undamaged and correct, closure has been verified. Instances that either have not been
preflighted, or that fail preflight, are known as open PPML/VDX instances.

An open instance will typically have either missing files or resources, which the receiver may request from the
sender if the sender has stated that the instance has been fully transferred.

For strict PPML/VDX instances, additional steps are necessary to verify that an instance is closed, such as
verifying that all PDF data conforms to the PDF/X-1a or PDF/X-3 standards. A table of disallowed conditions in
strict PPML/VDX instances can be found as Annex E of the PPML/VDX standard. In the general case, a
process capable of fully parsing and interpreting PDF files will be required to ensure a PDF file meets one of the
permitted PDF/X standards.

Some relaxed PPML/VDX instances may not be verifiable as closed without further communication with the
sender. If closure cannot be verified, a preflight tool should inspect the PPML/VDX file set to determine what
tasks must be carried out to achieve closure and provide this information to the recipient of the instance. For
example, an instance may be open due to version mismatches between files, or unidentified color data. The

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 23

section on managing closure (section 5) describes steps that can be used when insufficient information is
present to continue processing the instance.

4.4 Closure assertion and confirmation

The central idea surrounding closure assertion versus closure confirmation is that a strict PPML/VDX instance
asserts closure, because a strict instance is required to meet all of the PPML/VDX-Strict conformance criteria
laid out in the PPML/VDX standard. When inspecting a strict instance, the primary responsibility of a preflight
process is to confirm that the instance is closed. No assumption should be made that an instance is closed
based on the assertion of the sender.

All assertions made by the sender of a PPML/VDX instance should be verified, whether a strict or relaxed
instance. A recipient should not process any instance containing assertions proven to be false without
consulting the sender.

4.5 Overview of the closure process

It is important to understand that a preflight tool must complete the following tasks to confirm closure:

4) The PPML/VDX layout file must be confirmed to be a conforming PPML/VDX layout file (see Clause 5
of CGATS.20-2002).

5) For each entry in the content binding table, the Src reference must indicate a PDF file that is accessible,
and the values of the MD5_Checksum, BaseID and UniqueID attributes of the Binding sub-elements
in the ContentBindingTable entry must be validated, if present.

6) Each file referenced by an EXTERNAL_DATA_ARRAY element in the PPML layout data must have a
corresponding entry in the content binding table.

7) All other files in the PPML/VDX file set must be confirmed to be in compliance with the PPML/VDX
standard and the standards or specifications governing these components.

8) Validation of the IntendedColor attribute of the Self and Binding sub-elements in the
ContentBindingTable must be carried out for entries where this value is true.

The presence of all required font data in the layout and content files of a strict PPML/VDX instance must be
verified. In the relaxed case, fonts may also be listed as resources in the PPML data stream; for example, when
a sender cannot embed these fonts due to license restrictions. These should be verified as present and correct
at the receiver as described the next section. It is extremely important that fonts not be substituted without
explicit instruction.

The PPML/VDX standard gives specific criteria for verification of the integrity of a strict PPML/VDX instance.
The criteria for verification of the integrity of a relaxed instance beyond the requirements of the PPML/VDX
standard are implementation dependent.

4.6 Implications of Strict and Relaxed conformance on preflighting

A PPML/VDX instance may be open because a complete preflight cycle has not taken place, not all content files
or resources have arrived, or the failure of a preflight process.

If an instance is open due to files not being received, preflighting cannot be completed. Once all files have been
transmitted, or a sender has sent notice that it is permissible to process a PPML/VDX instance, preflighting
should be completed. As previously noted, preflight on resources that have been received is, of course,
permissible.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

24 © NPES 2004 All rights reserved

If all files have been received and the instance fails preflight, then the PPML/VDX instance has one or more
errors. Strict conforming PPML/VDX instances known to be open for this reason should not be accepted by a
receiver in a blind exchange workflow.

Relaxed PPML/VDX instances are typically used in workflows where additional technical communication is
expected to occur between clients and the entity producing an instance. Retransmission requests as well as
negotiation over acceptable levels of risk for an open PPML/VDX instance mean that an instance that failed
validation of closure should likely be maintained, and the portions that prevent closure remedied. Through this
sender and recipient can agree on an acceptable level of risk to be assumed during the production of a
PPML/VDX instance. This is known as managing closure.

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 25

5 Validating a PPML/VDX Instance

5.1 Overview

There are a number of tasks involved in determining if a PPML/VDX instance is complete and has closure. For
PPML/VDX instances which are not closed, a recipient will wish to determine if the instance is acceptable for
processing, and if not, determination of what components will need to be supplied by the sender.

The files comprising the PPML/VDX instance should be brought under the recipient’s control before any
processing. This means that the recipient has copies of all files in the PPML/VDX instance that cannot be
changed during processing by the sender or any third party.

5.2 Resolving references to PPML/VDX-Content files

The ordered steps of a typical implementation are:

• Receive PPML/VDX-Layout file and validate file system consistency.

• Check conformance of PPML/VDX layout file (i.e. PDF structure), including verification that all required
keys are present in the /Catalog and have valid values.

• Verify that the XML from the PPMLVDX element is well-formed and valid.

• Perform a consistency check between the values of the EXTERNAL_DATA_ARRAY::Src attributes in
the PPML data and the Src attribute of the Binding element entries in ContentBindingTable.

• Traverse the ContentBindingTable, and for each Binding element entry resolve the URI referencing
the PPML/VDX-Content file (PDF file). NOTE: Consumer should look for the /Base key in the layout
file’s /Catalog object and if present use the value as the base URI for all URI’s in the
ContentBindingTable. The /Base key would be used in those cases where all of the assets referenced
from the ContentBindingTable are located on a system that is different from the location of the layout
file.

The recommended procedure for resolving a URI found in the ContentBindingTable would be
use the /Base entry, if present, concatenated with the URI. If that resolution attempt fails, treat
the URI as absolute and re-resolve.

Application behavior in the failure to resolve a URI depends on the workflow and is not dictated
by this note or the PPML/VDX specification itself.

5.2.1 Resolving URIs from Binding element entries

It is recommended that the URI of the Binding element entry only use the http, https, ftp and file protocol
schemes. When resolving these URIs, the following contexts may be encountered:

1) The Src URI is a URL that refers to a PPML/VDX-Content PDF file in the local environment. This is a
likely scenario in workflows where the PPML/VDX data producer resides in the same environment as
the receiver (e.g. integrated authoring and production workflows). The following is an example URI
syntax:

"<file:///Acme/VDPJobs/assets/promo/ppmlvdxContent/version1.3/logo.pdf>".

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

26 © NPES 2004 All rights reserved

2) The Src URI is a URL that refers to a PPML/VDX-Content PDF file in a different environment. Note that
the PPML/VDX standard requires that the URI be resolvable from within the receiving environment.
This is a likely scenario in workflows where the PPML/VDX data producer or content data provider
resides in a remote environment relative to the receiver. The following is an example URI syntax:

 "<http://www.acme.com/VDPJobs/assets/promo/ppmlvdxContent/version1.3/logo.pdf>".

All discussions of URI resolution for Binding element entries should also apply to the resolution of PPMLRef and
JDFRef URIs.

For each uniquely identified PPML/VDX-Content file transferred or verified as present, compute the MD5
checksum and compare to the value of the MD5Checksum attribute of the associated Binding entry. There
should be uninterrupted file integrity between the checksum computation and asset use. If this cannot be
guaranteed, then the system should re-compute and re-verify the checksum prior to asset usage.

5.2.2 Resolving Remote to Local Binding

There are three technical approaches to maintaining a proper binding between the PPML/VDX-Layout file
reference and the transferred PPML/VDX-Content PDF files when managed locally:

1) Update the LocalSrc attribute of the Binding element of the ContentBindingTable to refer directly to
the PPML/VDX-Content PDF file. Henceforth, this value must be used as the indirect reference by the
workflow when resolving an EXTERNAL_DATA_ARRAY::Src reference.

2) Use a proxy server or a URI resolving service. This requires thorough integration of all elements to use
that proxy interface. This may be more specialized than a standardized off-the-shelf proxy service
because persistence management of resolved and transferred resources is required in the case where
local control of PPML/VDX-Content files is required. Also, many off-the-shelf services provide caching
facilities that may not be appropriate in a given workflow.

3) Edit the PPML data and revise all EXTERNAL_DATA_ARRAY::Src attributes to take the value of the
localized URL. In this scenario it is very much encouraged that the corresponding
ContentBindingTable/Binding/@Src attribute be updated to maintain consistency. It is important to
note that doing this means a total loss of context in terms of the original reference to the remote
PPML/VDX-Content file. It is then no longer possible to say that a particular URI fails when it is no
longer present in the remote environment.

Modification of any part of a PPML/VDX-layout file (such as an embedded ContentBindingTable or PPML
document) requires a tool with intimate knowledge of the PDF file format so as not to damage it.

5.3 Determining file set completeness and correctness

The first step in determining closure is to ensure that all referenced data has been transferred without error and
is accessible to the receiver. Start by confirming the presence of a valid PPMLVDX element. If the PPMLVDX
element is valid, then search the element for the ContentBindingTable sub-element. Within this sub-element
there is allowed to be a Self sub-element, though it is not required in the case when the PPML/VDX-Layout file
contains none of the PDF pages used as compound element data.

If the Self sub-element is present, it must have a string type attribute named Src, which must be a non-empty
string. The URI referenced by this string may or may not be accessible. It is not necessary to verify the
correctness of this URI, it is only useful as a mechanism for determining that the Src URI reference of a
EXTERNAL_DATA_ARRAY is referring to a compound element of the containing PPML/VDX-Layout file.

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 27

Next, all PPML/VDX-Content files that are referenced by the PPML/VDX instance must be verified as accessible.
For every unique Src attribute value of the EXTERNAL_DATA_ARRAY elements defined in the PPML data
stream or element that refers to a PPML/VDX content file, confirm that there is a corresponding Self or Binding
sub-element in the ContentBindingTable. To carry out this procedure, examine the Src attribute values in each
EXTERNAL_DATA_ARRAY element and create a list of URI references. For each reference in this list either

⎯ there must be a Binding sub-element in the ContentBindingTable where the Src attribute value is an
exact match, including case, or

⎯ the Src value of the Self sub-element in the ContentBindingTable is an exact match.

Then, verify the existence of the content file specified by the Src or LocalSrc attribute of each Binding sub-
element in the ContentBindingTable. Confirm that the file contents correspond to the value of the UniqueID or
BaseID attribute, if present, and that its contents also correspond to the value of the MD5_Checksum, if
supplied.

To carry out this procedure, the preflight process must complete the tasks noted below for each Binding sub-
element in the ContentBindingTable.

5.4 Validating Strict PPML/VDX instances

Each Binding sub-element in the ContentBindingTable must have a UniqueID value; this UniqueID value
must match the second string element of the ID array in the trailer dictionary for the file referenced by the Src
value in that Binding sub-element. The Binding sub-element in the ContentBindingTable must also have an
MD5_Checksum value. The calculated MD5 checksum for the contents of the file referenced by that Binding
sub-element's Src value must correspond to the MD5_Checksum value in the Binding sub-element. See
CGATS.20-2002, 6.12, for more detail.

5.5 Validating Relaxed PPML/VDX instances

Each Binding sub-element in the ContentBindingTable may have either a UniqueID value or a BaseID value.
A Binding sub-element must not have both a UniqueID value and a BaseID value. Use of the BaseID entry
indicates that, though the latest version of a content file is preferred, an earlier revision of the content file is
allowed. If the BaseID attribute is used, it is assumed that communication will take place between sender and
receiver to determine the correct file revision before the instance is produced.

If a Binding sub-element has a UniqueID value, the preflight process is obligated to confirm that this UniqueID
value matches the changing unique identifier (the second string element) in the ID array in the trailer dictionary
for the file referenced by the Binding sub-element. If the Binding sub-element has a BaseID value, the preflight
process is obligated to confirm that this BaseID value matches the value of the permanent unique identifier (the
first string element) of the ID array in the trailer dictionary for the file referenced by the Binding sub-element.

Each Binding sub-element may have an MD5_Checksum value. If the Binding sub-element has an
MD5_Checksum value, the preflight process must calculate the MD5 checksum for the contents of the file
referenced by the sub-element and confirm that it matches the supplied MD5_Checksum value.

A relaxed PPML/VDX instance can be a valid PPML/VDX file set even if one or more of its Binding
sub-elements has neither a UniqueID value nor a BaseID value and even if one or more of its Binding
sub-elements does not have an MD5_Checksum value. Nevertheless, it is recommended that all producers of
relaxed PPML/VDX instances include suitable values wherever possible.

These values are subject to change during the course of processing a PPML/VDX instance; for example, if a
revision of a content file is supplied. Therefore, the final preflight before producing a PPML/VDX file set should
not rely on cached values or information from prior preflight processes.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

28 © NPES 2004 All rights reserved

The PPML specification has a provision for the explicit identification of occurrences (known as global
occurrences) intended to persist in the RIP's raster cache, allowing the reuse of already cached raster data
present in the RIP across PPML/VDX instances as well as within an instance. In PPML/VDX, however, there is
no way to explicitly identify occurrences intended to persist in the raster cache across job instances. Specific
RIP implementations may implicitly re-use rasterized sources across PPML/VDX instances, thus not requiring
the authoring system to explicitly manage the RIP's raster cache.

Requiring the accessibility of all source components of a given PPML/VDX instance supports the independence
from device related states. This obviates the possibility of obsolete resource data being used.

5.6 Validation of XML data

The XML data for the PPMLVDX element should be examined next. If the PPMLVDX element contains a
PPMLRef element, then the referenced PPML file must be verified as accessible and conforming to the PPML
specification and the restrictions given in CGATS.20-2002. Otherwise, the PPMLVDX element must contain a
PPML element, which must be verified in the same manner as the PPMLRef element would be. Likewise, if the
PPMLVDX element contains a JDFRef element, then the referenced JDF data stream must be verified as
accessible and in conformance to the JDF specification and the restrictions given by the PPML/VDX standard.
If the PPMLVDX element contains a JDF element, then this must be verified as conforming.

5.7 Determining color correctness

All content and layout files in a strict PPML/VDX instance must have content binding table entries that assert the
IntendedColor attribute as true; files in a relaxed PPML/VDX instance may have entries that also assert this
attribute as true but are not required to do so. A preflight tool could validate color in a strict PPML/VDX instance
and choose not to in a relaxed instance. Not validating the color introduces the risk of not being able to properly
produce the relaxed PPML/VDX instance.

For each entry in the ContentBindingTable, if the IntendedColor attribute is set to true, the PDF content or
layout file referenced must be checked and verified to be in compliance with the PDF/X-1a or PDF/X-3 standard.
The process for verifying that they are PDF/X-1a or PDF/X-3 conforming files can be done using software for
this purpose.

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 29

6 Cropping and trimming

According to the PDF specification, the value of the /Page dictionary's /MediaBox key specifies the maximum
rectangular extent of content that may contain visible marks if a /CropBox key is not present. Content marks
that fall outside of this region shall be clipped. If a /CropBox is present, then content within the MediaBox
rectangle is to be clipped to the common rectangular region formed by the /CropBox and /MediaBox rectangles.

In PPML/VDX, the content contained within the common rectangular region defined by the /CropBox and
/MediaBox rectangles may be further manipulated and clipped by PPML TRANSFORM and CLIP_RECT
elements.

Regardless of the size and location of the /CropBox, the lower left corner of the /MediaBox is always the
location referenced by the PPML OBJECT element's Position attribute.

The PPML/VDX reader must ignore the /BleedBox, /TrimBox, and /ArtBox if present in a PDF /Page dictionary
and thus not treat them as clipping boxes.

The rectangle defined by the /TrimBox specifies the rectangular extent of the finished page and therefore its
content.

Typically, a PDF page designed for print may have additional process oriented content marks (e.g. bleeds,
printer's marks, etc.). Such marks may appear in the area between the rectangles defined by the PDF /Page
dictionary's /TrimBox and /CropBox, and are physically trimmed away in a post-press operation.

When PDF pages are used as compound elements on a PPML page, any content marks located between the
/TrimBox and /CropBox will be visible as PPML page content. Including these marks as content on a PPML
page is very likely not the intent of the designer.

To prevent the rendering of content marks defined outside of the /TrimBox rectangle, it is the responsibility of
the PPML/VDX generation application to specify an appropriate PPML CLIP_RECT to prevent such marks from
being imaged. This CLIP_RECT should be derived from the PDF page's /TrimBox.

When bleed content marks are defined outside the PDF /Page dictionary's /TrimBox rectangle, and the object
occurs on the PPML page as defined by the PageDesign::TrimBox attribute such that the bleed is still required
on one or more edges, then the PPML CLIP_RECT should be extended to include the bleed area; i.e. the
CLIP_RECT should be derived from the /BleedBox rather than the /TrimBox on those edges.

It is important to note that if not specified, the /TrimBox defaults to the /CropBox, and if /CropBox is not
present, it defaults to /MediaBox.

The PPML/VDX standard requires the use of the TrimBox attribute of the PPML PAGE_DESIGN to specify the
rectangular dimensions of PPML pages. It is important to note that this PPML TrimBox attribute is not the same
as the PDF /Page dictionary's /TrimBox.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

30 © NPES 2004 All rights reserved

7 Use of JDF product intent

In a JDF managed workflow, a print product description can be represented as a hierarchy of JDF product
nodes. For example, the highest level, or root, JDF product node, may provide details as to how the printed
components defined in subordinate JDF product sub-nodes are assembled as a finished product. Each leaf
node of the tree specifies the details of a structure component of the finished product. Examples of such
structure components include the front cover, book block, and back cover structure components of a bound
book as depicted in the following illustration:

Figure 5 — Example of JDF product notes

Each of the leaf nodes of a JDF product intent hierarchy usually contains a JDF resource element that refers to
the graphical page data to be rendered on the finished page(s) it describes. Each such node may also specify
the finished page size, media type, and whether or not content is printed on one or both sides of finished sheets.
JDF product intent nodes always describe print product components in terms of their physical, finished
characteristics in a way that is independent of the process used to manufacture them.

Unlike static print product descriptions, PPML/VDX is able to use JDF product intent data to specify many
diverse print products in a single job definition. Each print product of a job may have variations in characteristics
such as media, binding style, page layout, and folding requirements. These variations can be specified by the
PPML/VDX authoring system, which uses database driven rules to specify those characteristics. These rules
are usually applied simultaneously with the application of the database rules used for guiding the composition of
customized page content.

The PML/VDX standard permits the use of the PPML TICKET_REF element to reference individual JDF product
intent resources or partitions of such resources. In this way print product intent characteristics can be logically
embedded inline within the PPML hierarchy and thus characterize the product intent context of page definitions.
When this is done, the placement of the TICKET_REF element in the PPML hierarchy defines the scope of
applicability of the product intent resource or partition that it references.

It is important to note that the JDF element for carrying product intent information is optional in PPML/VDX. If,
however, a JDF element is present or identified in the PPMLVDX/ProductIntent element and no TICKET_REF
elements are present in the PPML data, the JDF data must be ignored by the reader.

The use of TICKET_REF in the PPML data is illustrated in the examples of this section. Note the use of the
terms page, panel, and sheet in the context of these examples have the following meanings:

• A page is a one sided section of a folded piece defined by the crease of the fold.
• A panel is a two-sided section of a final folded piece.
• A sheet is a piece of paper bound into the finished book.

Root JDF Product
Node

(Spiral bound book)

JDF Product
sub-node

(Front Cover)

JDF Product
sub-node

(Book Block)

JDF Product
sub-node

(Back Cover)

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 31

The illustrations below clarify the meanings of these terms. Note that although the illustrations depict a booklet
(i.e., a saddle-stitched book), the concepts carry through to other kinds of books, as well (for example, perfect-
bound books).

The illustrations below depict an eight-page booklet. The booklet is made up of two sheets. There are two
panels on each sheet, and there are two pages on each panel (one page on each surface of the panel).

Figure 6 — Example of the sheets of a finished booklet

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

32 © NPES 2004 All rights reserved

Figure 7 — Examples of front and back sheets

In JDF, the product intent description of a print product has no concept of a sheet as defined above. Instead, the
description of the print product can be thought of as a bound stack of panels where the sides (pages) of each
panel are described in the context of structure components. A content page defined by the PPML PAGE
element is understood to be the page content that is mapped to a side of a panel.

It is important to note that the concept of a “finished page” as defined in the JDF Specification corresponds to
the definition of a “panel” as used in this document.

7.1 Linking PPML data with JDF Product Intent data

There are two ways in PPML/VDX to specify JDF product intent data using JDF and are referred to here as
Inline JDF Intent and Referential JDF Intent.

Inline JDF Intent – refers to the use of the TICKET_REF sub-element within the PPML data structure as
allowed by CGATS.20. The JDF intent data for this approach shall conform to the JDF Specification and is that
which is stored within the ProductIntent sub-element of the PPMLVDX element as defined by the PPML/VDX

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 33

standard. This approach is considered ”inline” because TICKET_REF elements in the PPML data refer directly
to the JDF intent data. Logically this inserts the JDF intent semantics inline, co-mingled with the PPML page
data. The actual JDF intent data is a separate resource.

Referential JDF Intent – refers to the use of a separate JDF job ticket instance that is not directly linked from
within the PPML/VDX structured document page data. This refers to the use of JDF for VDP applications as
allowed by the JDF Specification where the JDF node’s RunList resource refers to the PPML/VDX data, rather
than the PPML data’s TICKET_REF entries referring to the JDF data. This approach involves the use of JDF’s
RunTags partition key in the partitioning of product intent resources. This JDF job ticket data is structured
differently from the JDF data that may be stored within or referenced from the ProductIntent sub-element of the
PPMLVDX element as defined by the PPML/VDX standard (described here as Inline JDF Intent). Referential
JDF Intent is a separate JDF intent data file that utilizes the JDF RunList resource to refer to the JOB, and
DOCUMENT elements present in the PPML data either by name (i.e. JOB/@Label, DOCUMENT/@Label) or
by index. This method has the added benefit of being able to describe more complex print products such as the
ability to specify the relationship of multiple finished print products defined per recipient instance. In this case,
the JDF data structure is represented as a hierarchy of JDF nodes and the intent resource’s UpdateID attributes
are not required.

It is important to note that from a JDF process definition perspective it is strongly recommended the PPML/VDX
data be linked to the JDF process node (that defines the process that consumes the PPML/VDX data) by a
RunList resource. This means that in a JDF process context the JDF job ticket that utilize PPML/VDX data uses
a referential method where an inline TICKET_REF based method in is strongly discouraged. If inline intent is
used, it is recommended that the PPML data structuring as described in 7.2.1 be used.

It is important to note that the use of JDF as described in this section emphasizes the Inline JDF Intent approach.
Additional work describing how to properly structure PPML data in terms of the use of the PPML hierarchy to
enable smooth crossover to the Referential JDF Intent approach is underway and briefly described in 7.2.1.

From the standpoint of using JDF to specify product intent, when a Referential JDF Intent job ticket is present in
a PPML/VDX job context, it shall take precedence over any TICKET_REF elements and Inline JDF Intent data
present in the PPMLVDX element.

7.2 Inline JDF Intent - Referring to JDF product intent resource data from PPML data

CGATS.20 defines the semantics and contextual relationship between PPML page descriptions and the product
intent information it references (refer to 6.10 and Annex D of ANSI CGATS.20). It allows the use of PPML
TICKET_REF elements to reference JDF intent resources, or partitions of JDF intent resources, to provide
complete descriptions of finished print product components.

According to CGATS.20, TICKET_REF elements may occur at various levels within the PPML data structure
hierarchy where their semantic interpretation depends on a simple inheritance scheme. The lowest level of the
hierarchy that TICKET_REF elements are permitted to occur is the DOCUMENT element. They cannot occur
within PAGE elements. If they occur between PAGE elements it means that only the PAGE elements within the
DOCUMENT element that follow the TICKET_REF element are in scope of the inline product intent semantic it
specifies. Some of the examples in 7.2.2 show the use TICKET_REF elements at the DOCUMENT element
level and between PAGE elements.

7.2.1 Structured Use of TICKET_REF elements in the PPML data

To simplify conveying product intent semantics using the Inline JDF intent specification, the PPML data can be
organized respective of the structure components of the print product described. For example, if a book has
front cover, body, and back cover structure components as in figure 5 and there are distinct variations in their
product intent descriptions (i.e. media style differs), a separate DOCUMENT element within a JOB element is
defined that specifies the set of pages for each respective structure component. The JOB element in this case is
used to specify the structure components of print products that belong to a particular recipient (recipient

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

34 © NPES 2004 All rights reserved

instance). In this structured approach, TICKET_REF elements will never occur between PAGE elements.
Instead, TICKET_REF elements that characterize the product intent description of the structure component will
occur within the DOCUMENT element and before the first PAGE element. Since DOCUMENT elements then
convey the definition of a structure component, if the structure component is that of a bound print product
comprising multiple structure components (as shown in figure 5), it is then necessary to specify the
BindingIntent using a TICKET_REF that occurs in the JOB element ahead of the first DOCUMENT element
that defines the first component to be bound.

Another benefit of this approach is that both the JOB and DOCUMENT elements may be named using their
respective Label attributes. This is an important feature of PPML where in the Referential JDF Intent and
process approach (to be described in detail in a document currently being prepared by the CGATS committee)
to linking PPML data to JDF, the value of the DOCUMENT/@Label attribute corresponds to the value of the
JDF RunList/@DocNames attribute and also that of the RunTags resource partition key. As well, the value of
the JOB/@Label attribute corresponds to that of the RunList/@SetNames attribute.

The following incomplete example JDF and PPML syntax shows the basic structured organization of PPML data
for specifying a simple wire comb bound customized print product per recipient instance. The PPML hierarchy of
the example shows how separate DOCUMENT elements are used to specify the sets of pages particular to a
structure component as well as the use of TICKET_REF elements in specifying their product intent
characterization. For two sided covers, two pages are shown for each the FrontCover and BackCover
components, and the finished pages of the Body components are printed two sided in different media than the
cover components. The relationship of each structure component definition (DOCUMENT element) within each
recipient instance (JOB element) is specified in terms of BindingIntent by the TICKET_REF element present in
the JOB element.

Example:

<JDF xmlns=”http://www.CIP4.org/JDFSchema_1” ID=”JT0000” Type=”Product” Status=”Ready”
DescriptiveName=”JDF for PPML/VDX examples”>
…
<ResourcePool>
 <MediaIntent ID=”Medias” Class=”Intent” PartIDKeys=”Option” Status=”Available”>
 <Texture DataType=”EnumerationSpan” Actual=”Smooth”/>
 <StockType DataType=”EnumerationSpan” Actual=”Bond”/>
 <MediaColor DataType=”EnumerationSpan” Actual=”White”/>
 <Grade DataType=”IntegerSpan” Range=”3 4 5” Actual=”5”/>
 <MediaIntent Option=”M1” UpdateID=”120GSMCoatedWhite” Class=”Intent”>
 <FrontCoatings DataType=”EnumerationSpan” Actual=”Glossy”/>
 <BackCoatings DataType=”EnumerationSpan” Actual=”Glossy”/>
 <Weight DataType=”IntegerSpan” Actual=”120”/>
 </MediaIntent>
 <MediaIntent Option=”M2” UpdateID=”100GSMUncoatedWhite” Class=”Intent”/>
 <Weight DataType=”IntegerSpan” Actual=”100”/>
 </MediaIntent>
 </MediaIntent>

 <LayoutIntent ID=”Layout” Class=”Intent” UpdateID=”TwoSidedHeadToHead”
 Sides=”TwoSidedHeadToHead” Status=”Available” />

 <BindingIntent ID=”Binding” Class=”Intent” UpdateID=”WireComb” Status=”Available”/>
 <BindingType DataType=”EnumerationSpan” Actual=”WireCombBinding”/>
 <BindingSide DataType=”EnumerationSpan” Actual=”Left”/>
 <WireCombBinding>
 <WireCombMaterial DataType=”EnumerationSpan” Actual=”Steel-Silver”/>
 <WireCombShape DataType=”EnumerationSpan” Actual=”Twin”/>
 </WireCombBinding>
 </BindingIntent>

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 35

</ResourcePool>
<ResourceLinkPool>
 <MediaIntentLink rRef=”Medias” Usage=”Input”/>
 <LayoutIntentLink rRef=”Layout” Usage=”Input”/>
 <BindingIntentLink rRef=”Binding” Usage=”Input”/>
</ResourceLinkPool>
</JDF>

<PPML …>
 …
 <TICKET_REF ExtIDRef=”TwoSidedHeadToHead”/>

<JOB Label=”Recipient0001”>
 <TICKET_REF ExtIDRef=”WireComb”/>
 <DOCUMENT Label=”FrontCover”>
 <TICKET_REF ExtIDRef=”120GSMCoatedWhite”/>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 </DOCUMENT>
 <DOCUMENT Label=”Body”>
 <TICKET_REF ExtIDRef=”100GSMUncoatedWhite “/>
 <PAGE …> … </PAGE>
 …
 <PAGE …> … </PAGE>
 </DOCUMENT>
 <DOCUMENT Label=”BackCover”>
 <TICKET_REF ExtIDRef=”120GSMCoatedWhite”/>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 </DOCUMENT>
 </JOB>
 …
 <JOB Label=”Recipient2384”>
 <TICKET_REF ExtIDRef=”WireComb”/>
 <DOCUMENT Label=”FrontCover”>
 <TICKET_REF ExtIDRef=”120GSMCoatedWhitec/>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 </DOCUMENT>
 <DOCUMENT Label=”Body”>
 <TICKET_REF ExtIDRef=”100GSMUncoatedWhite”/>
 <PAGE …> … </PAGE>
 …
 <PAGE …> … </PAGE>
 </DOCUMENT>
 <DOCUMENT Label=”BackCover”>
 <TICKET_REF ExtIDRef=”120GSMCoatedWhite”/>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 </DOCUMENT>
 </JOB>
</PPML>

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

36 © NPES 2004 All rights reserved

7.2.2 Generic Use TICKET_REF Elements in the PPML data

As allowed by CGATS.20, TICKET_REF elements may occur in the PPML, JOB, and DOCUMENT element
only. This section illustrates the semantics of the use of TICKET_REF and JDF through the use of a series of
examples.

Example 1:

This example shows a PPML element with no inline product intent information (no TICKET_REF elements are
present in the PPML element). This means that the relationship of the PAGE, DOCUMENT, and JOB
sub-elements to finished print products is undefined. The interpretation of these sub-elements must be
conveyed by information separate from the PPML/VDX instance, as in the Referential JDF Intent approach.

Such a PPML/VDX instance is similar in concept to a set of pages defined by a typical PDF file where, by itself,
no information is provided as to how the pages are applied in the production of a print product.

<PPML …>
 …
 <JOB …>
 <DOCUMENT …>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 </DOCUMENT>
 </JOB>
 <JOB …>
 <DOCUMENT …>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 </DOCUMENT>
 </JOB>
</PPML>

In the following examples, the use of the PPML TICKET_REF element is introduced. In example 2, JDF intent
data defines the product intent resources referred to by the TICKET_REF elements in the PPML data in
examples 3 through 8 that follow.

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 37

Example 2:

<JDF xmlns="http://www.CIP4.org/JDFSchema_1" ID="JT0001" Type="Product" Status="Ready"
DescriptiveName="JDF for PPML/VDX examples">
<ResourcePool>
 <MediaIntent ID="Medias" Class="Intent" PartIDKeys="Option" Status="Available">
 <Texture DataType="EnumerationSpan" Preferred="Smooth"/>
 <StockType DataType="EnumerationSpan" Preferred="Bond"/>
 <MediaColor DataType="EnumerationSpan" Preferred="White"/>
 <Grade DataType="IntegerSpan" Range="3 4 5" Preferred="5"/>
 <MediaIntent Option="M1" UpdateID="120GSMCoatedWhite" Class="Intent">
 <FrontCoatings DataType="EnumerationSpan" Preferred="Glossy"/>
 <BackCoatings DataType="EnumerationSpan" Preferred="Glossy"/>
 <Weight DataType="IntegerSpan" Preferred="120"/>
 </MediaIntent>
 <MediaIntent Option="M2" UpdateID="100GSMUncoatedWhite" Class="Intent"/>
 <Weight DataType="IntegerSpan" Preferred="100"/>
 </MediaIntent>
 </MediaIntent>

 <LayoutIntent ID="Layouts" Class="Intent" UpdateID="TwoSidedHeadToHead"
 Sides="TwoSidedHeadToHead" Status="Available" />

 <BindingIntent ID="Bindings" Class="Intent" PartIDKeys="Option" Status="Available"/>
 <BindingIntent UpdateID="SaddleStitchLeft">
 <BindingType DataType="EnumerationSpan" Preferred="SaddleStitch"/>
 <BindingSide DataType="EnumerationSpan" Preferred="Left"/>
 <SaddleStitching>

 <StitchNumber DataType="IntegerSpan" Options="2 3" Preferred="3"/>
 </SaddleStitching>
 </BindingIntent>
 <BindingIntent UpdateID="SaddleStitchTop">
 <BindingType DataType="EnumerationSpan" Preferred="SaddleStitch"/>
 <BindingSide DataType="EnumerationSpan" Preferred="Top"/>
 <SaddleStitching>
 <StitchNumber DataType="IntegerSpan" Options="2 3" Preferred="3"/>
 </SaddleStitching>
 </BindingIntent>
 </BindingIntent>
</ResourcePool>
<ResourceLinkPool>
 <MediaIntentLink rRef="Medias" Usage="Input"/>
 <LayoutIntentLink rRef="Layouts" Usage="Input"/>
 <BindingIntentLink rRef="Bindings" Usage="Input"/>
</ResourceLinkPool>
</JDF>

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

38 © NPES 2004 All rights reserved

Example 3:

In this example, TICKET_REF elements have been added after each DOCUMENT element start tag. These
TICKET_REF elements each refer to the same partition of a JDF BindingIntent resource that specifies saddle
stitching and also specifies that it is the left edge side that is to be bound. In this example, the set of PAGE
elements defined within each DOCUMENT element are to be saddle stitched. Note that exactly how the pages
are to be mapped to the surfaces of the finished pages is not specified so the page content may therefore be
printed single or two sided according to production system settings.

<PPML …>
 …
 <JOB …>
 <DOCUMENT …>
 <TICKET_REF ExtIDRef="SaddleStitchLeft"/>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 …
 </DOCUMENT>
 </JOB>
 <JOB …>
 <DOCUMENT …>
 <TICKET_REF ExtIDRef="SaddleStitchLeft"/>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 <PAGE …> … </PAGE>
 …
 </DOCUMENT>
 </JOB>
</PPML>

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 39

Example 4:

In this example, a TICKET_REF element has been added to indicate that the pages of each DOCUMENT
element to be saddle stitched and are to be printed on both sides beginning with the contents of the first PAGE
being mapped to the front side of the first finished sheet. This TICKET_REF element refers to a JDF
LayoutIntent element that specifies two sided head to head printing. The resulting finished print products for
this example will be two 8 page saddle stitched booklets each with 4 two-sided finished sheets. Each sheet has
two panels, and each panel has two pages.

<PPML …>

 …

 <TICKET_REF ref="TwoSidedHeadToHead"/>

 <JOB …>

 <DOCUMENT …>

 <TICKET_REF ExtIDRef="SaddleStitchLeft"/>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 </JOB>

 <JOB …>

 <DOCUMENT …>

 <TICKET_REF ExtIDRef="SaddleStitchLeft"/>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 </JOB>

</PPML>

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

40 © NPES 2004 All rights reserved

Example 5:

In this example, a TICKET_REF was added which refers to a partition of the JDF MediaIntent resource that
specifies 100 grams per square meter (gsm) white paper coated on two sides. In this example, all of the pages
of the two saddle stitched, two sided print products are to be printed on 100 gsm white coated stock.

<PPML …>

 …

 <TICKET_REF ref="100GSMCoatedWhite"/>

 <TICKET_REF ref="TwoSidedHeadToHead"/>

 <JOB …>

 <DOCUMENT …>

 <TICKET_REF ExtIDRef="SaddleStitchLeft"/>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 </JOB>

 <JOB …>

 <DOCUMENT …>

 <TICKET_REF ExtIDRef="SaddleStitchLeft"/>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 </JOB>

</PPML>

Example 6:

In this example, TICKET_REF elements have been added that refer to JDF MediaIntent partitions that specify
120 gsm coated white paper. This example specifies three bound booklets:

1. The finished booklet described by the first JOB element is a 12-page (six finished panels) saddle-
stitched booklet with a first page of 120 GSM coated white stock. The front surface of the first panel is
imaged with the content of the first PAGE element and the backside of the first panel is left blank due to
the presence of the TICKET_REF following the first PAGE sub-element (refer to clause 6.10 of
CGATS.20). The second through fourth leaves are printed on 100 GSM uncoated white paper as
specified by the TICKET_REF element, and are printed on both sides. The fifth panel is also printed on
100 GSM uncoated white paper, but only printed on its front side due to the presence of the
TICKET_REF following the eighth PAGE element. The sixth panel, like the first, is 120 GSM coated
white paper. It has a blank front due to the presence of a blank <PAGE/> element, and its back is
imaged (it is logically the back cover of the booklet).

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 41

2. The finished booklet described in the second JOB element is a 10-page (five-panel) saddle-stitched
booklet. It is important to note that the number of panels is not an even multiple of two; this presents
special finishing requirements.

3. Faithfully meeting the exact requirements of such an intent description must be weighed against the
feasibility of producing this saddle-stitched booklet by simply adding an extra panel that is blank on both
sides. Simply adding an additional panel not represented in the PPML/VDX data violates the product
intent description and should not be done without prior agreement with the print specifier.

4. The finished booklet described in the third JOB element is almost the same as the one described in the
second JOB element; the difference is that two blank pages have been added in the third JOB element.
It represents a 12-page (six-panel) saddle-stitched booklet. This example has additional pad pages
added with a common media type so that it is possible to saddle stitch. In this example, the finished
booklet has a fifth panel with both front and back pages blank.

<PPML …>

 …

 <TICKET_REF ref="120GSMCoatedWhite"/>

 <TICKET_REF ref="TwoSidedHeadToHead"/>

 <JOB …>

 <DOCUMENT …>

 <TICKET_REF ExtIDRef="SaddleStitchLeft"/>

 <PAGE> … </PAGE>

 <TICKET_REF ExtIDRef="100GSMUncoatedWhite"/>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <TICKET_REF ExtIDRef="120GSMCoatedWhite"/>

 <PAGE/>

 <PAGE> … </PAGE>

 </DOCUMENT>

 </JOB>

 <JOB …>

 <DOCUMENT …>

 <TICKET_REF ExtIDRef="SaddleStitchLeft"/>

 <PAGE> … </PAGE>

 <TICKET_REF ExtIDRef="100GSMUncoatedWhite"/>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <TICKET_REF ExtIDRef="120GSMCoatedWhite"/>

 <PAGE/>

 <PAGE> … </PAGE>

 </DOCUMENT>

 </JOB>

 <JOB …>

 <DOCUMENT …>

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

42 © NPES 2004 All rights reserved

 <TICKET_REF ExtIDRef="SaddleStitchLeft"/>

 <PAGE> … </PAGE>

 <TICKET_REF ExtIDRef="100GSMUncoatedWhite"/>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE/>

 <PAGE/>

 <TICKET_REF ExtIDRef="120GSMCoatedWhite"/>

 <PAGE/>

 <PAGE> … </PAGE>

 </DOCUMENT>

 </JOB>

</PPML>

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 43

Example 7:

In this example, the sets of pages defined by the two DOCUMENT elements are all intended to be saddle
stitched together into a single 16-page, eight-panel print product. This example demonstrates how PAGE,
DOCUMENT, and JOB sub-elements of the PPML hierarchy carries no semantics regarding which pages are to
be bound together as finished components; it only expresses a reader-order set of related pages. Therefore, in
PPML/VDX, the DOCUMENT and JOB elements simply represents a convenient partitioning of sets of PAGE
elements as a stack oriented scope mechanism.

<PPML …>

 <TICKET_REF ExtIDRef="120GSMCoatedWhite"/>

 <TICKET_REF ExtIDRef="SaddleStitchTop"/>

 <TICKET_REF ExtIDRef="TwoSidedHeadToHead"/>

 <JOB …>

 <DOCUMENT …>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 </JOB>

 <JOB …>

 <DOCUMENT …>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 </JOB>

</PPML>

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

44 © NPES 2004 All rights reserved

7.3 Recommended use of the PPML hierarchy in PPML/VDX for complex jobs

As can be seen in the examples of the previous section, that in order to specify how the PPML pages are
related to the finished print product in the context of Inline JDF Intent, it is necessary to overlay a simple product
intent semantic model on top of the PPML content model using the PPML TICKET_REF element. Using this
model, it is unambiguous as to exactly which panels, or finished sheets are to be bound together into a set of
bound panels, and on which side of a panel the content defined by a PAGE element is to be imaged. As was
seen in example 7, it is made very clear that because a set of PAGE elements occur within a DOCUMENT
element doesn't mean that only those pages are to be bound together.

The structured approach described in 7.2.1 utilizes the DOCUMENT element as the way of specifying related
sets of pages that have a common product intent characterization as a structured component. Innthis case
TICKET_REF elements do not occur between PAGE elements and the TICKET_REF that specifies the binding
style occurs in the JOB element before or between DOCUMENT elements. This structured approach is more
intuitive because it better organizes the semantic model and correlates more naturally to the hierarchical JDF
node hierarchy in the case of the Referential JDF Intent or process model.

Given the nature of VDP jobs that specify multiple variable or versioned print components per recipient instance,
it is necessary to provide a mechanism that correlates each of the components intended for a given recipient.
Hence it is important that each component be identified to its targeted recipient. For example, if a particular
recipient is to receive an envelope containing three (3) variable finished components, such as a personalized
cover letter, personalized return post card, and a custom color brochure, then several options exist for
representing them in a VDP job that uses PPML/VDX:

1. Define each component in separate PPML/VDX instances for a total of three PPML/VDX instances.

2. Aggregate all three components into a single PPML/VDX instance.

3. Aggregate two of the components in a first PPML/VDX instance, and represent the third component in a
second PPML/VDX instance.

The first option suggests a unique PPML/VDX instance for each component. This is a relatively straightforward
approach; however, it is necessary to guarantee that the print components represented by each can be reliably
correlated. Therefore, the recipient ordering of components for each PPML/VDX instance should align across
the PPML/VDX instances.

The second option suggests that all recipient-instance components are defined in a single PPML/VDX instance.
As with the first option, it is necessary to guarantee that the print components belonging to each recipient can be
reliably correlated.

The third option is simply a combination of the first and second options.

7.4 Aggregating multiple recipient components in a single PPML/VDX instance

In the PPML data, there may be three sets of pages, each intended as the content for the pages of each
independently finished component. Of course, given the PPML/JOB/ DOCUMENT /PAGE hierarchy of PPML,
and the permitted use of TICKET_REF, there are numerous ways in which these multiple print components may
be defined. A preferred way would be to use the PPML JOB element as the container within which the finished
components for a given recipient are defined. For example, every three successive DOCUMENT sub-elements
of the single JOB element would define the set of finished components for a recipient.

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 45

Example 8:

This example shows the use of the PPML element hierarchy where each JOB element contains the definition of
the variable components for a given recipient. The JOB element's Label attribute has the value of the recipient
identifier taken from the original recipient database. The Label attribute of each DOCUMENT attribute has a
value that identifies the particular component.

It is important to note that TICKET_REF elements referring to a binding style must not be specified outside of
the JOB element since it is not proper to bind together printed components which target multiple recipients. It is
also preferred that TICKET_REF elements referring to binding style always be specified within the DOCUMENT
element so that the DOCUMENT element receives the semantic of encapsulating all of the pages for the print
component.

<PPML>

 …

 <TICKET_REF ExtIDRef="120GSMUncoatedWhite"/>

 <TICKET_REF ExtIDRef="TwoSidedHeadToHead"/>

 <JOB Label="R0001">

 <DOCUMENT Label="CoverLetter">

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 <DOCUMENT Label="PostCard">

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 <DOCUMENT Label="Brochure">

 <TICKET_REF ref="SaddleStitchTop"/>

 <TICKET_REF ref="120GSMCoatedWhite"/>

 <PAGE …> … </PAGE>

 . . .

 <PAGE …> … </PAGE>

 </DOCUMENT>

 </JOB>

 <JOB Label="R0002">

 <DOCUMENT Label="CoverLetter">

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 <DOCUMENT Label="PostCard">

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 <DOCUMENT Label="Brochure">

 <TICKET_REF ref="SaddleStitchTop"/>

 <TICKET_REF ref="120GSMCoatedWhite"/>

 <PAGE …> … </PAGE>

 . . .

 <PAGE …> … </PAGE>

 </DOCUMENT>

 </JOB>

 <JOB Label="R0003">

 <DOCUMENT Label="CoverLetter">

 <PAGE> … </PAGE>

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

46 © NPES 2004 All rights reserved

 <PAGE> … </PAGE>

 </DOCUMENT>

 <DOCUMENT Label="PostCard">

 <PAGE> … </PAGE>

 <PAGE> … </PAGE>

 </DOCUMENT>

 <DOCUMENT Label="Brochure">

 <TICKET_REF ExtIDRef="SaddleStitchTop"/>

 <TICKET_REF ExtIDRef="120GSMCoatedWhite"/>

 <PAGE …> … </PAGE>

 . . .

 <PAGE …> … </PAGE>

 </DOCUMENT>

 </JOB>

</PPML>

Version 1 – August 2004 Application Notes for CGATS.20 (PPML/VDX)

© NPES 2004 All rights reserved 47

Annex A

Converting PPML/VDX instances to PPML file sets

Users of current PPML workflows may wish to extract the PPML data stream from a PPML/VDX instance and
convert PPML/VDX resource references to references suitable for use with the extracted PPML. We name such
a process a PPML/VDX unpacking tool. This can be thought of as an adaptor tool, not an "unpacking" tool,
because there is nothing special a PPML consumer needs to do differently in terms of resolving PPML external
content references.

This section outlines the procedure that an unpacking tool should carry out to locate the PPML data used by a
PPML/VDX instance, extract the PPML data to a separate file or location if necessary, and modify the filename
references in the PPML as required for the recipient’s environment. In addition to performing the basic tasks
described in this document, a well-designed unpacking tool should also perform preflight steps on the
PPML/VDX instance as described elsewhere in this application note.

It should not be necessary to modify the URIs of the EXTERNAL_DATA_ARRAY elements. The point here is to
target a PPML/VDX data set to a PPML/GA device interface. URIs in EDA are independent of packaging in the
case of PPML data embedding w/in PDF file.

The steps an unpacking tool should carry out are:

1. Determine the conformance level of the PPML/VDX instance.

To do this, the unpacking software must locate the Info dictionary in the PPML/VDX-Layout file and read the
value of the GTS_PPMLVDXConformance entry.

If the value is PPML/VDX-Strict:2002, the unpacking software should expect to find an unencrypted XML
PPMLVDX data structure inside the PPML/VDX-Layout file. If the value is PPML/VDX-Relaxed:2002, the
PPMLVDX XML data stream may either be encrypted or not. In either case, this stream may be compressed
whereby an unpacking tool must be able to decompress this entry.

If the value is not present or has a value different from those described above, then the PPML/VDX instance
is invalid. Such a file cannot be expected to contain valid PPML data.

2. Read the value of the GTS_PPMLVDXData entry in the PPML/VDX layout file’s Catalog dictionary.

The PPML/VDX standard requires that the GTS_PPMLVDXData value in the Catalog dictionary must be an
indirect reference to the stream object containing the PPMLVDX element. If this entry is not present, the file
is not a valid PPML/VDX-Layout file

3. Use the indirect reference obtained in Step 2 to look in the PPML/VDX file’s cross-reference table and find
the location (the absolute file offset) of the stream object that contains the PPMLVDX element.

4. Within the stream object at the file offset obtained in Step 3, find the PPMLVDX element.

5. Within the PPMLVDX element, find the Layout sub-element.

6. Examine the Layout element to determine whether it contains a PPML element or a PPMLRef element. It
must contain either of these and not both.

Application Notes for CGATS.20 (PPML/VDX) Version 1 – August 2004

48 © NPES 2004 All rights reserved

If the conformance level of the PPML/VDX instance is PPML/VDX-Strict:2002, the Layout element must
contain a PPML element rather than a PPMLRef element. If a relaxed instance contains a Layout element
that contains a PPMLRef element, verify the existence of the PPML file referred to by the PPMLRef
element’s Src attribute. In either case, resolve the URI of the Src attribute and obtain the PPML data file.

7. Parse the PPML element and modify the values of the Src attribute of EXTERNAL_DATA_ARRAY elements
in the PPML file as required for the PPML/VDX recipient’s environment.

 Using the information in Appendix D of the PPML Functional Specification, Version 2, as a guide, create valid
URI references to PPML/VDX layout and content PDF files. These will reference the files under the control
of the receiver of the PPML/VDX instance.

The PPML/VDX-Layout file is valid as a PDF file to be referenced, as are the content files of the PPML/VDX
instance. Use the steps described in the section on preflighting as a guide to resolving URI references that are
not immediately resolvable. If MD5 checksums are provided in the ContentBindingTable/Binding elements for
referenced content files, these may be used by the unpacking tool to either verify that correct files are
referenced, or as a method to derive correct URI references for ones that are not immediately resolvable.

