

Page 1 of 7 Copyright 2008-2010 PODi www.podi.org

CheckPPML	
 Pro	
 3.0	
 and	
 CheckPPML	
 3.0	

CheckPPML Pro and the original CheckPPML can be used to view and validate PPML files. The
original CheckPPML is limited to processing up to 100 pages per file and can be downloaded for
free. The Pro version allows for an unlimited number of pages to be processed.

CheckPPML is a PPML Consumer that supports the GA (Graphics Arts) subset of PPML
versions 1.5, 2.1, 2.2 and 3.0. It supports relative and absolute URL's as well as URL's using
the http, https, ftp and file protocols.

CheckPPML has both a command line and a simple graphical user interface to convert PPML
files to PDF.

Installing CheckPPML on a PC
You will need the following to be able to run CheckPPML:

• Java 1.5 Run Time Environment (JRE) http://java.com -or- Development Kit (JDK),
downloadable from http://java.sun.com

• GPL GhostScript -or- Adobe Distiller (a component of Acrobat commercial versions, but
not Acrobat Reader). GhostScript for Windows PC can be downloaded from
http://www.softpedia.com/progDownload/GPL-Ghostscript-Download-83803.html

After making sure that the above tools are installed, you may unpack CheckPPML zip package
into any directory on your system. You should be able to double-click on CheckPPML.jar to start
the graphical user interface.

Installing CheckPPML on a Mac
CheckPPML runs well on Mac OSX 10.4.9 and later using either the built-in PostScript
normalizer or GPL Ghostscript. To use GhostScript the gs executable must be in the users
PATH (which is the case when you install Ghostscript in it's default location on the Mac). Like
the Windows version you may install CheckPPML anywhere and can double click on the
CheckPPML.jar file to launch the GUI.

• GPL Ghostscript for Mac can be downloaded from
http://www.openprinting.org/download/printdriver/macosx/
The correct file is named gplgs-8.61xxx.dmg or higher.

CheckPPML also runs well on Intel Macs that run Microsoft Windows in a Parallels Desktop
(www.parallels.com) or VMWare Fusion (www.vmware.com) virtual PC window. Please note
that due to differences in libraries used on the Mac platform not all image formats are as well
supported as on the Windows platform.

Transparency support
Please note that Ghostscript does not properly render transparency between layers.
Transparency is only accurately represented in the results when using Acrobat Professional on
a Windows PC.

Page 2 of 7 Copyright 2008-2010 PODi www.podi.org

Using the Graphical User Interface

The Graphical User Interface (GUI) has three tabs: Conversion, Setup and Messages:

• On the "Conversion" tab, clicking on the button next to "File:" will allow you to select the
PPML file you would like to check and convert to PDF. If this PPML file depends on global
reusable object definitions, then click on the button next to "Preload:" to select the PPML
file that defines those global reusable object definitions. Please note that no output will be
generated for this PPML preload file.

• Under the "Setup tab, in the PS to PDF converter section you can choose to use
GhostScript or Adobe Distiller (or Built-in on Mac OSX). The selected distiller is used
whenever CheckPPML needs to convert PostScript to PDF. Please note that CheckPPML
only uses this converter when it encounters PostScript files, CheckPPML does not need it
for PPML files that do not refer to PostScript files. The “Strict EPS Checking” checkbox
selects whether CheckPPML will perform EPS conformance checks on the PostScript
content encountered by CheckPPML. Some PPML consumers are able to successfully
process files with these EPS errors. The “Convert ProcSet to Prolog” implements a work
around for PPML Producers that incorrectly assume that a PostScript ProcSet acts like a
PostScript prolog. Some PPML consumers are not as strict as CheckPPML enabling such
files to print successfully anyway. The "Print range" section allows you to select a range of
pages for which CheckPPML should generate PDF output. The “Suffix” field is used to
determine the names of the various output files generated by CheckPPML. The “Memory”
field enables large PPML files to be processed by increasing the amount of memory
available to CheckPPML.

Page 3 of 7 Copyright 2008-2010 PODi www.podi.org

• The “Messages” tab will show messages that are generated during the conversion. The
generated log file contains the same information.

Output file naming
The names of the output files are all placed in the same directory as the main PPML file and
have a name derived from the name of the main PPML file. If the main PPML file is called
example.ppml then:

• The generated PDF file will be called example<suffix>.pdf
• The manifest file will be called example<suffix>-manifest.xml
• The log file (containing error and warning messages) will be called example<suffix>.log

Memory Usage
Images consume huge amounts of memory, and it is definitely possible to run out. CheckPPML
default is limited to Java's 64MB of virtual memory by default. This may not be enough, but
there is a solution. Under the "Setup" tab, up to 2GB of memory may be allocated to
CheckPPML.
Memory required is approximately 220% of the largest single image, when un-packed. As an
example, a 32MB JPEG occupies 5 to 10X this space in memory. So, if we presume 10X, a
32MB JPEG becomes 320MB, and CheckPPML will require 220% larger memory, or 700MB of
RAM to run (in addition to memory required for basic system functions).
If on the Messages tab an "out of memory" message is displayed when checking a file,
consider changing the amount of memory allocated by CheckPPML on the Setup tab.

CheckPPML's Manifest feature
CheckPPML's default setting is to generate a Manifest listing (XML) of all components of the
PPML dataset during the checking process. The manifest is placed in the same location as the
PPML dataset, and contains a unique MD5 checksum value for the content of the specific PPML
dataset, and MD5 checksums for all the assets referred to by that PPML file. The recipient of a
PPML dataset and manifest can use CheckPPML to verify that all assets required for the job
have been received by re-running CheckPPML on the package as received with a different
output suffix. If the checksums in the newly generated manifest matches the manifest in the
received package, nothing has changed, and the PDFs generated by CheckPPML at point of
origin will also match the one generated upon receipt.

Page 4 of 7 Copyright 2008-2010 PODi www.podi.org

Using the command line interface
CheckPPML can also be run from the command line. It must be run as:
java -jar <installation-directory>/manifest.jar <parameters>

The parameters are as follows:

• -o <output file>: instructs CheckPPML to generate a manifest file with the given name
• -pdf <pdf file>: instructs CheckPPML to convert the PPML file to a PDF file with the given

name
• -distiller: instructs CheckPPML to use Adobe Distiller for PostScript to PDF conversion
• -gs: instructs CheckPPML to use AFPL GhostScript for PostScript to PDF conversion
• -checkEPS: instruct CheckPPML to perform EPS conformance tests on PostScript

content
• -debug: instruct CheckPPML to keep the generated PostScript files for debugging

purposes
• -fixprolog: instruct CheckPPML to convert a PostScript ProcSet to a Prolog.
• -from <pagenr>: instruct CheckPPML to only create output for pages starting at the

specified page number
• -to <pagenr>: instruct CheckPPML to only create output for pages up to the specified

page number
• -log <log file>: instruct CheckPPML to generate error and warning messages to a log file

instead of generating messages on the standard error output
• -s <directory>: instructs CheckPPML to lookup relative file names in the PPML file in the

given directory instead of the directory in which the PPML file is located
• -d <description>: defines the descriptive text to be used in the manifest file
• -f <feature name> <category name>: defines the name of a feature and category to be

included in the manifest file (may be specified multiple times)
• the remaining arguments are assumed to be PPML files that must be processed. Output

will only be generated for the last PPML file; the other PPML files are processed to gather
global reusable object definitions.

Reporting issues
Please report issues to ppmlinfo@podi.org. Please include:

• a description of the problem
• the PPML file and any files referenced from that PPML file
• a PDF file showing the correct output

Requesting features
Feature request may be sent to ppmlinfo@podi.org. Please include:

• a short description of the feature
• a business case for adding the feature

Page 5 of 7 Copyright 2008-2010 PODi www.podi.org

Change Log 3.0.6
The following enhancements have been made in CheckPPML-3.0.6:
● Improved detection of installed Distiller versions

Change Log 3.0.3
The following enhancements have been made in CheckPPML-3.0.3:
● Improved detection of installed Distiller versions
● Include a patch to allow a ProcSet to be converted into a Prolog

The following issues have been fixed in CheckPPML-3.0.3:
● Change default softmask background to be white instead of black

Change Log 3.0
The following enhancements have been made in CheckPPML-3.0:
● improved performance
● support for PPML/GA 3 datasets including transparency

Change Log 1.2
The following enhancements have been made in CheckPPML-1.2:
● improved performance
● added support for allocating more memory to CheckPPML
● improved user interface and error handling

Change Log 1.1
The following enhancements have been made in CheckPPML-1.1:
● improved performance
● added support for Adobe CMYK JPEG images
● added support for the Mac OSX built-in PostScript Normalizer

The following issues have been fixed in CheckPPML-1.1:
● fixed content errors when processing ZIP files
● fixed content errors when processing large numbers of REUSABLE_OBJECT definitions

Change Log 1.0.5
The following issues have been fixed in CheckPPML-1.0.5:
● fixed detection of content size for TIFF and JPEG images
● fixed detection of Acrobat Distiller 8

Change Log 1.0.4
The following enhancements have been made in CheckPPML-1.0.4:
● improved performance
● reduced memory usage

Change Log 1.0.3b1
The following issues have been fixed in CheckPPML-1.0.3b1:
● fixed inheritance of PAGE_DESIGN elements
● fixed problems with the usage of Acrobat Distiller 8.1

The following enhancements have been made in CheckPPML-1.0.3b1:
● added support for Prolog style supplied resources
● enhanced verification of supplied resource content
● added EPS conformance checking for PostScript content
● added PODi and PPML logos

Change Log 1.0.2
The following issues have been fixed in CheckPPML-1.0.2:
● erroneous complaints about an Overwrite attribute on SUPPLIED_RESOURCE and

OCCURRENCE elements (schema issue)
● fixed problems with empty PS files
● fixed problems with multi-page TIFF files (incorrect clipping for certain tiled TIFF's)

Page 6 of 7 Copyright 2008-2010 PODi www.podi.org

The following enhancements have been made:
● reduced memory usage when dealing with raster image data.
● checks were added to detect when the Dimensions attribute of a SOURCE element does not match

the dimensions of the content referred to from that SOURCE element.

Page 7 of 7 Copyright 2008-2010 PODi www.podi.org

Change Log 1.0.1
The following issues have been fixed in CheckPPML-1.0.1:
● after switching from Distiller to GhostScript CheckPPML uses the incorrect path for the PostScript

interpreter
● the checkppml.joboptions file would not be found if the path to the CheckPPML installation

contained spaces
● CheckPPML hangs if the conversion runs out of memory (which is limited by the Java VM at

startup)
● Base64 decoding sometimes adds an extra byte to the decoded content
● Certain attributes do not allow scientific notation or numbers starting with a decimal sign (.5) to be

used
● TIFF files without an Xresolution/YResolution unit cannot be processed
● Redefining global reusable objects produces errors
● Defining global supplied resources produces errors
● Deleting global reusable objects or supplied resources produces errors
● Processing a file with a CONFORMANCE element produces errors
● The path to Distiller and/or GhostScript is not correctly detected
● PDF output of CheckPPML produces a “Drawing error” (issue in Acrobat please use version 8)
● PPML files processed by CheckPPML can not be modified while CheckPPML is still running
● EPS files with a binary preview header cause conversion errors

Furthermore CheckPPML-1.0.1 now supports ZIPCD packaged PPML datasets.

