
 the Digital Printing initiative

PPML
Personalized Print Markup Language

for XML-based, efficient printing
of documents with reusable and variable content

Functional Specification
Version 2.1

July 31, 2002
The PPML Working Group

© 2002 PODi http://www.podi.org

http://www.podi.org/

PPML
The Personalized Print Markup Language
http://www.podi.org

Feedback and Developer Participation

PODi welcomes feedback on this specification, and offers the following services to support
widespread adoption of the specification:

• Specification Updates

The PPML specification is distributed free of charge. If you are a developer who will be
implementing the PPML standard, you should subscribe to the free PPML updates and tech note
service.

Additional PPML features are already planned, and some aspects of the specification are likely
to be refined as development proceeds. The spec document itself will be updated, and
technical notes will be published containing clarifications, implementation notes, and so on.

• Developer Support web site

If you are a software or hardware developer interested in supporting PPML, you can register to
participate in the PPML Developers discussion group. At present, there is no charge for this
service.

To participate in the PPML initiative in any of the above ways, send an email to
ppmlinfo@podi.org.

PODi
The Digital Printing Initiative
Web: www.podi.org

http://www.podi.org/
mailto:ppmlinfo@podi.org
http://www.ppml.org/

www.podi.org Copyright 2002 PODi Page i

Table of Contents
Chapter 1: Introduction ...1

1.1 Purpose of the PPML language..1
1.2 The PPML 2.0 Architecture ...1
1.3 Organization of this document..3
1.4 Notation used in this document ...3
1.5 Additional resources..4
1.6 Feedback...4

Chapter 2: The PPML Data Format ..5
2.1 XML ..5
2.2 Non-XML data ..7

Chapter 3: Terminology and Basic Concepts ..9
3.1 Producers and Consumers ..9
3.2 Anatomy of a Personalized Print project ...9
3.3 Additional terminology ..10
3.4 Terms related to PPML Job Ticketing...11
3.5 Detection of Errors ..11

Chapter 4: The Structure of PPML Data ..13
4.1 Hierarchy, Scope, and Inheritance ..13
4.2 The <PPML> Element ...15
4.3 The <DOCUMENT_SET> Element..16
4.4 The <DOCUMENT> Element ..17
4.5 The <PAGE> Element ..18
4.6 The <PAGE_DESIGN> Element ...19
4.7 The <CONFORMANCE> Element ...21
4.8 The <TICKET> element...22
4.9 The <TICKET_REF> element ..24
4.10 The <TICKET_SET> element ..29
4.11 The <TICKET_STATE> element ..30

Chapter 5: The PPML page ..33
5.1 The PPML Coordinate System..33
5.2 A Page contains Marks..33
5.3 The <MARK> Element..34
5.4 The <VIEW> Element...36
5.5 The <TRANSFORM> Element..37
5.6 The <CLIP_RECT> Element..38
5.7 The <OBJECT> Element ...39

PPML Specification Version 2.1 July 31, 2002

Page ii Copyright 2002 PODi www.podi.org

5.8 The <SOURCE> Element ..40
5.9 The <EXTERNAL_DATA> Element ..42
5.10 The <EXTERNAL_DATA_ARRAY> Element...43
5.11 The <INTERNAL_DATA> Element ..44
5.12 The <REUSABLE_OBJECT> Element ...45
5.13 The <OCCURRENCE_LIST> Element ..46
5.14 The <OCCURRENCE> Element ...47
5.15 The <OCCURRENCE_REF> Element...51
5.16 Notes on REUSABLE_OBJECTs, OCCURRENCES, Scope, and Environment52
5.17 The <SEGMENT_ARRAY> element ..54
5.18 The <SEGMENT_REF> element ...56
5.19 Definition of PPML Extent Boxes...57
5.20 Notes on Transforming, Clipping and Positioning ..59

Chapter 6: Print Layout – Page Layout and Imposition..77
6.1 Introduction..77
6.2 The <PRINT_LAYOUT> Element...80
6.3 The <PAGE_LAYOUT> Element ...81
6.4 The <SHEET_LAYOUT> Element ..83
6.5 The <SHEET_MARK> Element ...84
6.6 The <IMPOSITION> Element ..85
6.7 The <IMPOSITION_REF> Element..87
6.8 The <SIGNATURE> Element ...88
6.9 The <CELL> Element ..90
6.10 The <HOR_TRIM_MARKS> Element ...95
6.11 The <VER_TRIM_MARKS> Element ..97
6.12 The <HOR_GUTTER> Element ...98
6.13 The <VER_GUTTER> Element ..100
6.14 The <HOR_FOLD_MARKS> Element ..101
6.15 The <VER_FOLD_MARKS> Element..102
6.16 The <REPEAT> Element ..103

Chapter 7: Production Specifications...107
7.1 Introductory remarks..107
7.2 The <PRIVATE_INFO> Element..108

Chapter 8: Resources ..109
8.1 The <REQUIRED_RESOURCES> Element ..109
8.2 The Element ..110
8.3 The <PROCESSOR> Element ..111
8.4 The <SUPPLIED_RESOURCES> Element ..112

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page iii

8.5 The <SUPPLIED_RESOURCE> Element ..113
8.6 The <SUPPLIED_RESOURCE_REF> Element ...114

Chapter 9: Future Capabilities..115
9.1 Transparency / overprinting...115
9.2 Color Management ...115
9.3 PPML Consumer Profile ..115

Chapter 10: Conformance Subsets..117
10.1 Introduction..117
10.2 Graphic Arts subset...117

Appendices
Appendix A: Acknowledgements...121
Appendix B: Introduction to XML...123
Appendix C: Strings to use for the Format attribute of SOURCE ...125
Appendix D: Packaging PPML datasets for transport using ZIP files or removable media127
Appendix E: Job ticketing formats ...135
Appendix F: Embedding text in a PPML stream ...137

Change History ..140

PPML Specification Version 2.1 July 31, 2002

Page iv Copyright 2002 PODi www.podi.org

www.podi.org Copyright 2002 PODi Page 1

Chapter 1:
Introduction

1.1 Purpose of the PPML language

This document describes the PPML (Personalized Print Markup Language) data format. The PPML
format was developed by members of PODi, a market development and education initiative.
Information about PODi is available at http://www.podi.org.

The main purpose of the PPML language, compared to most earlier languages, is to provide
object-level addressability and reusability. More information on these features and their
target applications is available in the PODi document Introduction to PPML.

1.2 The PPML 2.0 Architecture

PPML provides an open, XML-based architecture for digital print projects. It was first introduced to
the market at the worldwide “drupa” exhibition in Dusseldorf in May, 2000, and has become the
first widely-adopted print stream based entirely on an open standard.

1.2.1 Additional potential

Compared to any previous print data format, PPML offers significant advantages. Examples of new
applications expected in the next year include:

• Automatic, template-based page layout. A wide range of XML software tools are
available today that can convert a stream of data into a ready-to-print stream of PPML
documents. Some XML tools are free, including some that are Open Source; all can work with
PPML, because it is XML.

• Photo finishing: Most PPML Consumers can accept photos in their native file format (JPEG or
TIFF), which avoids the need for the photo system to wrap images in a container such as EPS.
This significantly simplifies workflow and speeds production. Similarly, for applications that
require printing the same photo repeatedly on a single sheet, PPML’s reusability feature means
the photo can be transmitted once to a digital press and imaged onto a sheet multiple times at
different sizes. This saves tremendous amounts of network bandwidth, data storage, and RIP
time, with no sacrifice in quality.

http://www.podi.org/

PPML Specification Version 2.1 July 31, 2002

Page 2 Copyright 2002 PODi www.podi.org

1.2.2 Basic PPML Workflow

PPML can be generated by any process, automated or operator-controlled. Its natural affinity for
data-driven applications means the workflow concept shown here is a common PPML application:

• The project concept is converted to a page
design template by an operator at a workstation.
This may be done using graphical tools or by
creating logical expressions in a templating
language.

• To create a print run, data records and digital
assets (such as photos) are blended using the
template. The result is a stream of fully marked-
up PPML documents.

• The PPML is fed to a digital print system, which
processes the pages, prints the documents, and
(in suitably equipped systems) feeds them to
automated finishing equipment.

In addition to being part of an open workflow, the
PPML specification is format-neutral, allowing content
data to be supplied in any format that a machine
supports. As such, it is not limited to the graphic arts
or any other application segment, and its design can

be extended in response to new opportunities and applications that are recognized by member
companies and PODi management.

Since version 1.0, PPML has been extended beyond being a content stream. PPML 2.0 provides a
complete workflow architecture:

• Device-independent document content. Documents can be encoded into PPML without
knowledge of the specific device that will print them.

• Open to all content formats. PPML does not specify content format; it provides metadata
about document structure and layout. Thus, it is immediately adaptable to any new application
that may arise that uses a different content format from those previously associated with digital
print. Among other things, this means any new PPML-based print system can easily be driven
by all PPML-producing software, even if the new system is in a market that’s not normally
associated with digital print.

• Device-independent job ticketing. Common processing parameters such as media
selection, RIPping parameters, and finishing instructions can be inserted into the PPML stream
without knowledge of the specific device that will print them. The open PPML ticketing
architecture allows this to be done using the JDF standard or other ticket formats. These features
are defined in the separate document PPML Job Ticketing, also available from PODi.

• A design for packaging the job content, layout, and job ticket for reliable
transport. An appendix to this specification defines rules for creating a PPML print project
(job content, layout, and job ticket) on one system and transporting it to another, where it can
be unpacked and printed reliably, even in cross-platform applications.

PPML
Merged
content
and layout
stream
with
job ticket,
ready
to print
and finish

Design

Data Records Digital Assets /
Photos Templates

Finishing

Concept

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 3

Because the entire PPML architecture is XML-based, all of the content, structure, and job ticket data
in a PPML 2.0 project can be generated, manipulated, extracted, subsetted, and processed in any
way that is supported by common XML data tools. In addition, metadata and other types of non-
printing content can be embedded in PPML through the use of the XML namespace mechanisms.
This sort of flexibility and versatility has never before been available in a print stream, illustrating
the power of the PPML design.

For more information, contact PODi at info@ppml.org.

1.3 Organization of this document

This document reflects the hierarchical structure of PPML data.

Chapter 1 is this introduction.

Chapter 2 discusses the data format: XML.

Chapter 3 introduces terminology: the anatomy of a PPML document, job, etc.

Chapter 4 then presents the structure of PPML data, down to the level where documents are
composed of pages.

Chapter 5 presents the make-up of the PPML page, including “Objects” and “Marks,” the
printable page image elements that go onto pages. The language features in this chapter are the
source of the power of the PPML language.

Chapter 6 presents the Print Layout elements: page size, sheet size, imposition, step and repeat.

Chapter 7 discusses Production Specifications: aspects of how the finished document is
“manufactured.”

Chapter 8 discusses Resources – the additional items such as fonts that are required for
production of the pages.

1.4 Notation used in this document

The following typographic notation is used in this document.

• Code excerpts, element names, and attributes: Letter Gothic

• The vertical bar character signifies the logical OR operator: |
For instance, "SOURCE | OCCURRENCE_REF" means
"SOURCE or OCCURRENCE_REF".

• Because many PPML element names are common English words, it is often convenient and
accurate to use them conversationally. In this document, when an element name appears in text
not in a monospaced font, but with Initial Capitals, it is specifically referring to the PPML item
that bears that name. When it appears with no capitalization, the word is being used with no
special PPML significance. Example:
 The SOURCE element contains one or more component files.

mailto:info@ppml.org

PPML Specification Version 2.1 July 31, 2002

Page 4 Copyright 2002 PODi www.podi.org

 In an OBJECT element, the Source may contain data in any of several formats.
 Customers may submit image data that was gathered from a number of different sources.

• In tables of XML attributes, when the data type is Number or Integer, a multiplication sign
indicates a string of numbers separated by spaces. For instance, “Number × 4” indicates that
the value of the attribute should be four numbers, such as ”1.234 2.0 3 4.567.”

1.5 Additional resources

See the PODi web site, http://www.podi.org, for additional documents about PPML and
personalized printing in general.

1.6 Feedback

Feedback on this specification is welcome. Send email to ppmlinfo@podi.org.

http://www.podi.org/ppml
mailto:ppmlinfo@ppml.org

www.podi.org Copyright 2002 PODi Page 5

Chapter 2:
The PPML Data Format

2.1 XML

PPML is an application of XML, the Extensible Mark-up Language.

2.1.1 Introduction to XML

Data objects in an XML stream are called elements, and each type of element can be defined as
having certain attributes. This specification defines the elements for the PPML data format, the
hierarchy requirements for the structure of a PPML document, and the attributes for each element.

Readers who are not yet familiar with XML are directed to these resources:

• Appendix 2 of this document is a brief description of how XML works.

• XML.ORG (http://www.xml.org) is an industry web portal operated by OASIS, the
Organization for the Advancement of Structured Information Standards.

• OASIS’s “The SGML/XML Web Page” (http://www.oasis-open.org/cover/sgml-xml.html)
contains many excellent links to reference information.

• “The XML.commune” (http://www.xml.com) is a collaborative partnership between Seybold
Publications and Songline Studios, an affiliate of O’Reilly & Associates. The site includes Tim
Bray’s excellent annotated version of the XML syntax recommendation.

• Project Cool XML Zone (http://www.projectcool.com/developer/xmlz/) is one of the best sites
for developers, with a fairly good introduction to the basics of XML.

2.1.2 Notation for specifying optional elements

Within one XML element, other elements may be required or optional. In standard XML syntax
notation optional elements are denoted by placing a punctuation mark next to the subordinate
element:

Symbol Meaning
? 0 or 1 (may or may not be present)
+ 1 or more (at least one is required)
* 0 or more

Example: As will be described later, the PAGE element may or may not contain a Required
Resources section, and may contain zero or more PRIVATE_INFO elements and zero or more
Marks. This structure would be denoted:

PAGE (REQUIRED_RESOURCES?, PRIVATE_INFO*, MARK*)

This notation, with the “child” elements enclosed in parentheses, is sometimes referred to as the
element’s model.

http://www.xml.org/
http://www.oasis-open.org/cover/sgml-xml.html
http://www.xml.com/
http://www.projectcool.com/developer/xmlz/

PPML Specification Version 2.1 July 31, 2002

Page 6 Copyright 2002 PODi www.podi.org

2.1.3 PPML Capitalization conventions

In XML, the names of elements and their attributes are case-sensitive, so capitalization is significant
in the code examples in this document.

The PPML capitalization convention is:

Element names: ALL_CAPS_WITH_UNDERSCORE_BETWEEN_WORDS.

Attributes: TitleCase, with no space between words.

Example of a DOCUMENT_SET tag with attributes “Name” and “DocumentCount”:
<DOCUMENT_SET Label="MyJob" DocumentCount="150">

2.1.4 DTD and Schema

PPML is specified both in a Document Type Definition (DTD, http://www.w3.org/TR/1998/REC-
xml-19980210#dt-doctype) and in an XML Schema (http://www.w3.org/XML/Schema). All
versions of the DTD and Schema will always be available at http://www.podi.org/ppml.

Each DTD will have a “.dtd” suffix and each XML Schema will have a “.xsd” suffix. Each DTD and
Schema will be named “ppmlXXX” with the version number extended to two decimal places minus
the decimal point replacing the “XXX”. The DTD for PPML 2.1 is named ppml210.dtd and the
corresponding XML Schema is named ppml210.xsd.

XML processors wishing to validate a PPML document may do so by incorporating a DOCTYPE
declaration or by specifying an XML Namespace (http://www.w3.org/TR/REC-xml-names/) in the
top level, PPML, element.

For example, to validate a PPML Version 2.1 document by means of a DOCTYPE declaration, one
would include the following XML markup immediately following the XML declaration and any
intervening whitespace:

<! DOCTYPE PPML PUBLIC
 "-//PODi//DTD PPML 2.10//EN" "http://www.podi.org/ppml/ppml210.dtd">

Some XML processors, when validating against an XML Schema, require additional information
beyond the namespace declaration. To enable validation on the widest variety of XML processors,
a conforming Producer must also include the attributes xsi:schemaLocation and
xmlns:xsi, as in these examples:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.podi.org/ppml/ppml210.xsd"

Notes:

1. The value of xsi must be the URI to the XML schema instance definition, which is exactly as
shown above.

2. The value of schemaLocation must be the location of the schema as specified by the
Producer, and must be accessible to the Consumer. Typically the value will be the URL to the
PPML schema on the PODi web site, as shown above. But standard XML practice allows
caching a schema at some other location, in which case that location should be used as the
value of schemaLocation.

http://www.w3.org/TR/1998/REC-xml-19980210#dt-doctype
http://www.w3.org/TR/1998/REC-xml-19980210#dt-doctype
http://www.w3.org/XML/Schema
http://www.podi.ppml/
http://www.w3.org/TR/REC-xml-names/
http://www.podi.org/ppml/ppml210.dtd

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 7

To validate a PPML Version 2.1 document by means of an XML Namespace declaration, one
would start the actual PPML element with:

<PPML xmlns="http://www.podi.org/ppml/ppml210.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.podi.org/ppml/ppml210.xsd" ...

or:
<ppml:PPML xmlns:ppml="http://www.podi.org/ppml/ppml210.dtd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=http://www.podi.org/ppml/ppml210.xsd

where “ppml” in the strings “xmlns:ppml=“ and “ppml:PPML” above is an arbitrary NMTOKEN
(http://www.w3.org/TR/1998/REC-xml-19980210#NT-Nmtoken).

A valid PPML document must include one of these methods of version identification.

2.1.5 Character sets

PPML elements may contain characters as defined in the XML specification at
http://www.w3.org/TR/REC-xml#charsets.

2.2 Non-XML data

2.2.1 Introduction

Non-XML data is an important part of printing. For instance, it is used for PostScript code
fragments, bitmap images and compressed data such as fonts. But as of the writing of this
specification, XML elements cannot readily incorporate such data.1,2

A process is underway in the XML movement to solve this, but results are not expected within the
timeframe required by the PPML initiative. When a standard XML solution for non-XML data has
been announced, the intention is that PPML will support it. In the meantime another approach is
required.

In any event, this topic has no bearing on the central issues of how PPML defines pages and
documents that have reusable content; it relates only to how the various data objects are
“packaged” for transport from the Producer to the Consumer.

1 The XML specification states “CDATA sections may occur anywhere character data may occur; they are used

to escape blocks of text containing characters which would otherwise be recognized as markup. CDATA
sections begin with the string “<![CDATA[“ and end with the string “]]>.”

2Another application dealing with this issue is medical imaging. See
http://www.xml.com/xml/pub/98/07/binary/binary.html.

http://www.podi.org/ppml/ppml210.xsd
http://www.w3.org/TR/1998/REC-xml-19980210#NT-Nmtoken
http://www.w3.org/TR/REC-xml#charsets

PPML Specification Version 2.1 July 31, 2002

Page 8 Copyright 2002 PODi www.podi.org

2.2.2 External references

This method includes no non-XML data within the XML stream; rather, it is kept in external files and
pointed to as external resources. Example:

<EXTERNAL_DATA Src="ftp://uc.wisc.edu/logo.eps" .../>

2.2.3 Wrap the non-XML data and the XML structure, in segments, in MIME as a
means of transporting the dataset in a single stream.

Some applications will always absolutely require in-stream non-XML data. Other applications may
include hundreds or thousands of single-use images, which would be a nuisance to store online for
access via external reference; it’s simpler to just download the data within the job stream, print it,
and throw it away. Clearly, therefore, a method is needed to embed non-XML data in the
data stream.

When the W3C solution arrives it will be possible to send a stream of PPML elements interspersed
with non-XML data. The Consumer will receive the stream, extract the non-XML data and deal with
it, and parse and handle the XML segments.

Today, the same thing could be done by using MIME as an encoding filter: 3

• The Producer, instead of putting the additional data between start and end tags, inserts MIME
separators between segments.

• The Consumer, seeing that the start of the stream is MIME, not <?xml version="1.0"?>,
unpacks the MIME pieces and reassembles the XML and non-XML pieces.

• Processing then proceeds the same as it will when the W3C solution is implemented.

This method has the advantage of already being permissible in XML.

3Resources about MIME:

• RFC 2557 (MIME E-mail Encapsulation of Aggregate Documents, such as HTML (MHTML))
http://www.landfield.com/rfcs/rfc2557.html shows how to encapsulate HTML and external data; the
same method is valid for XML.

• RFC2393 (Content-ID and Message-ID Uniform Resource Locators)
http://www.landfield.com/rfcs/rfc2392.html defines cid URIs. This method is used when you email a
complete web page to someone, instead of just the URI.

• RFC 2387 (The MIME Multipart/Related Content-type) describes the MIME method that makes sense for
PPML applications: “Several applications of MIME ... require multiple body parts that make sense only in
the aggregate.”

www.podi.org Copyright 2002 PODi Page 9

Chapter 3:
Terminology and Basic Concepts

3.1 Producers and Consumers

• A “PPML Producer” (or simply “Producer”) is anything that generates PPML files. This may be a
standalone application, a system-level driver, or anything else.

• A “PPML Consumer” (or simply “Consumer”) is typically a RIP or DFE (digital front end to a
digital printing device), but it may be any other device (or process or system) that reads and
interprets PPML files. PPML Consumers only differ in these regards:
- the data formats they can process in SOURCE elements (see section 5.8)
- their degree of imposition support (See section 6.1.1 for details).
- the data encoding formats they support. The only required encoding format is Base64.

Note that a PPML Consumer may also be a PPML Producer. For instance, an application could read
PPML files, interpret their contents, modify the content or structure, and produce new PPML files.

3.2 Anatomy of a Personalized Print project

• Project is all activities involving both the initial setup phase and the subsequent production
runs. A Project is an on-going activity, consisting of multiple Jobs, as opposed to a conventional
print job which is typically produced once and archived.

• Job is the collection of activities and data to fulfill a single personalized printing work order,
or to prepare the templates, objects, etc. that will later be used in fulfilling production work
orders. In personalized printing, a Job is part of a Project.

• Page is a single side of a trimmed sheet after all trimming and binding has been performed.
Some personalization projects produce documents that have multiple Pages, others (e.g. a
single-sided postcard) produce documents of only one Page. A Page consists of static and/or
varying Objects, each in a specified position and orientation. (“Page” can also refer to the
internal representation of a Page in a PPML file.)

• Content Data is source data (e.g. a picture, a text block, an EPS file) which may be placed
on various Pages in various combinations of scaling, position, rotation, etc. A piece of Content
Data may be used by more than one Object.

• Object is a discrete piece of Content Data in a specific combination of scaling, rotation, etc.
Objects may be Disposable (single-use, RIP once and discard) or Reusable.

• Instance Document is the end result of the PPML manufacturing process: a set of one or
more Pages, bound or loose, produced from a single record in the variable-data file. (This term
also refers to any representation of such a document, such as an on-screen preview.)

PPML Specification Version 2.1 July 31, 2002

Page 10 Copyright 2002 PODi www.podi.org

• Personalized Document: an Instance Document.

• Static Document: a print job that contains no data-driven content – specifically, the page
content is not generated from variable-data fields.4 Such a document may include one or more
Reusable Objects, such as a PowerPoint background or a forms overlay.

• Sheet surface is one side of a press sheet, typically containing one or more instance Pages,
imposed into position for manufacturing of an Instance Document.

• Template is the set of instructions for composing Personalized Documents. It defines which
Pages may be in an Instance Document, what goes on each Page, and the logic rules by which
each Page will be populated in response to the variable data.

• Dataset: a PPML element, typically containing one or more Jobs and/or Reusable Object
definitions and related elements required to process them.

3.3 Additional terminology

• RIP: a Raster Image Processor – a hardware device or software application that reads a
source file in a particular language and converts it to a raster – a pattern of scan lines in a
data format that is suited to the machine on which the printing will take place.

• Pre-flight: a procedure, automated or manual, that is applied to a print file in the graphic
arts to ensure that when production begins, all output will be as expected. This includes
checking that all required resources are available. (The term “pre-flight” alludes to an aircraft
pilot’s pre-flight checklist, which is a process intended to ensure that nothing is overlooked
before the flight begins.)

• Streaming: a type of print application in which the Consumer begins output of the job before
it has received all pages.
 Typically streaming applications are found in long-run transactional printing applications,
such as printing of thousands of phone bills, not in the graphic arts. Usually this means the job
has tens of thousands of pages, essentially infinite, and it means that the resource usage is
unknown when output begins.
 A single streaming job can occupy a printer continuously for days printing unique pages.
To avoid data underrun (where the RIP processing doesn’t keep up with the print engine and
the engine either stops or prints blank pages), the Consumer system must consider carefully
how many resources and pages to preprocess before the stream output begins so that in the
steady state, RIP processing does keep up with the print engine.
 Effective management of cache resources requires reliable information about the future
need for a given cached object; in streaming applications, that information is typically not
available when output begins.

4 Looking at the PPML code for a document, it’s not possible to tell whether or not it was generated from

variable data fields. (The PPML format exists at the point in the workflow where all page content decisions
have already been made.) It’s nonetheless worth defining this term because such documents can be a valid
PPML application if they contain reusable objects.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 11

3.4 Terms related to PPML Job Ticketing

The following terms appear in this document, specific to the PPML Job Ticket.

Job Ticket: the data required to produce a set of printed documents, beyond the document
content and layout specified in PPML.

PPML Job Package: one PPML dataset plus its accompanying PPML Job Ticket. Together, these
specify the ticket, layout, and content required for print production.

Ticket State: The state of a PPML Consumer relative to all parameters that can be controlled by a
Job Ticket. See section 4.11 for more information.

3.5 Detection of Errors

When an error is detected with the information in a PPML file, the behavior of the Consumer is not
specified. Some Consumers may halt the job at that point. Others may generate a warning
message, ignore the offending PPML, and proceed as best they can.

PPML Specification Version 2.1 July 31, 2002

Page 12 Copyright 2002 PODi www.podi.org

www.podi.org Copyright 2002 PODi Page 13

Chapter 4:
The Structure of PPML Data

4.1 Hierarchy, Scope, and Inheritance

4.1.1 PPML is Hierarchical

PPML is a hierarchical structure, in which the properties and resources of an element are inherited
from its enclosing (“parent”) structure. The contents of the child element may temporarily override
(or mask) the parent’s properties and resources; when the child element ends, the previous state is
restored.

• A PPML element (the highest level) can contain resource definitions and DOCUMENT_SET
elements.

• A DOCUMENT_SET element (a set of personalized documents) can contain resource
definitions and DOCUMENT elements.

• A DOCUMENT element (which prints one complete document, of one or more pages) can
contain resource definitions and PAGE elements.

• A PAGE element can contain resource definitions and MARK elements. MARK elements
are what actually cause page content to be printed onto a page, using ink or toner.

PPML, DOCUMENT_SET, DOCUMENT and PAGE are known as levels in the PPML hierarchy.

• A MARK element (which places image marks on a page) can contain two kinds of content
elements: OBJECT and OCCURRENCE_REF. (Each of these content elements contains
smaller elements as well.)

4.1.2 Reusable Objects; caching

An important resource in PPML is the Reusable Object. As explained later in this specification, a
reusable piece of page content is expressed as an OCCURRENCE of a REUSABLE_OBJECT
element and is accessed using OCCURRENCE_REF. This construct is central to PPML’s productivity
improvement.

The reusability feature (enabled by elements such as REUSABLE_OBJECT and SOURCE) allows
the data for a picture (or any other page content) to be sent once to the Consumer, where it can be
RIPped (prepared for imaging on pages) and saved (cached) for reuse in subsequent Pages,
Documents, Document Sets, and Datasets. Typically, this improves efficiency by avoiding two
redundant burdens on the system: redundant downloading and redundant computation of the
content’s appearance. But there is no requirement that the Occurrence be cached; how reusability
is implemented in a Consumer is not defined in the PPML language.

PPML Specification Version 2.1 July 31, 2002

Page 14 Copyright 2002 PODi www.podi.org

Caching would ordinarily improve print speed (by avoiding re-RIPping), but it is valid for a PPML
Consumer not to cache but instead to regenerate the Occurrence, e.g. by re-fetching the source
data and/or reRIPping the object, each time it is used in an OCCURRENCE_REF.

4.1.3 Scope

Two important attributes of Occurrences are their Name and their Scope.

The name is the mechanism by which MARK elements can place the Occurrence on a page.

The scope defines how long the Consumer must remember the Occurrence, so that the Producer
can access it by name. Possible values are Page, Document, DocSet, PPML, and
Global.5 (Note that the content elements OBJECT and MARK are not scopes.)

When an Occurrence is in scope the Consumer is required to recognize the Occurrence’s name
and be able to use it. When the Occurrence’s specified scope level ends, the Occurrence becomes
out of scope. For instance, if an Occurrence has scope “Document”, then at the end of the current
Document (i.e. when a </DOCUMENT> tag is encountered) the Occurrence goes out of scope.

The scope of a PPML element defines where this element is known. Each named element is known
within the enclosing element specified by its scope (DocSet, Document, etc), from the point where it
is first defined until the end of that element.

The Occurrence can be defined with a scope larger than the current enclosing element. For
instance, within a DOCUMENT element an Occurrence can be defined with Scope="DocSet". In
that case the Occurrence will be known beyond the end of the DOCUMENT element, until the end
of the enclosing DOCUMENT_SET element.

Any element in the hierarchy inherits the names known to its enclosing element (i.e. a PAGE knows
of all elements that are defined in its enclosing DOCUMENT etc.).

Scope is discussed at greater length in section 5.10 of this document.

5 Global objects have an additional attribute, Environment, which can be used to categorize global objects for

project management purposes. See further discussion in section 5 of this document.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 15

4.2 The <PPML> Element

4.2.1 Description

The PPML element is the top level, encompassing all other elements of the dataset.

4.2.2 Model

PPML (CONFORMANCE*,
TICKET?,
SUPPLIED_RESOURCES?,
REQUIRED_RESOURCES?,
IMPOSITION*,
(PRINT_LAYOUT | PAGE_DESIGN)?,
PRIVATE_INFO*,
(TICKET_SET | TICKET_REF | REUSABLE_OBJECT | SEGMENT_ARRAY |
 (DOCUMENT_SET | JOB))*
)

4.2.3 Attributes

Attribute

Required
/Optional

Type

Description

Label Optional String An identifying label for this PPML element.

Creator Optional String Identifies application or person that created the file, for
instance to potentially aid in post-processing

CreationDate Optional String Time stamp, in date/hours/minutes/seconds, using the
subset of ISO 8601 described in the W3C’s
http://www.w3.org/TR/NOTE-datetime.
Example: “1997-07-16T19:20:30+01:00”

ResourcesIncluded Optional Boolean Values: Yes or No. If Yes, promises a Consumer that all
referenced content data, fonts, and other resources are
supplied with the dataset. See section 10.2.3, “Details of
ResourcesIncluded”.

SheetLayoutIncluded Optional Boolean Values: Yes or No. If Yes, declares that this dataset
includes the SHEET_LAYOUT element and requires that
the imposition defined in SHEET_LAYOUT must be
honored. (See Section 6.1.1 for discussion of optional
imposition support in PPML). Consumers that do not support
SHEET_LAYOUT must reject the dataset if this attribute’s
value is Yes.

4.2.4 Implementation notes

Note that a PPML dataset is allowed to not contain any Document Sets. A valid dataset could
contain nothing but a set of Reusable Object definitions with Scope="Global" which are being
sent to the Consumer for pre-processing and storage in the Consumer system.

http://www.w3.org/TR/NOTE-datetime

PPML Specification Version 2.1 July 31, 2002

Page 16 Copyright 2002 PODi www.podi.org

4.3 The <DOCUMENT_SET> Element

Note
JOB is a synonym for DOCUMENT_SET: they can be used
interchangeably. Similarly, in attribute values, Job is a synonym
for DocSet.

4.3.1 Description

A Document Set is a set of Instance Documents. Typically an Instance Document represents the
binding of layout information (e.g. a template) and a record of data (e.g. from a database).

A Document Set is a group of Instance Documents that are to be treated as a unit, perhaps because
the documents are intended for a single recipient, such as a cover letter, a brochure, and a
postcard. PPML does not require that Document Set must be used in this way; it is merely a
convenient grouping mechanism.

4.3.2 Model

DOCUMENT_SET (SUPPLIED_RESOURCES?,
REQUIRED_RESOURCES?,
IMPOSITION*,
(PRINT_LAYOUT | PAGE_DESIGN)?,
PRIVATE_INFO*,
(TICKET_SET | TICKET_REF | REUSABLE_OBJECT | SEGMENT_ARRAY |
DOCUMENT)+)

4.3.3 Attributes

Attribute

Required
/Optional

Type

Description

Label Optional String An identifying label for this Document Set

DocumentCount Optional Integer Number of Instance Documents in this Document Set. If this
attribute is used, it must be accurate; if the actual document
count is different, it’s an error.

4.3.4 Context

The DOCUMENT_SET element appears only within a PPML element. It is optional: a PPML dataset
may contain zero or more Document Sets.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 17

4.4 The <DOCUMENT> Element

4.4.1 Description

The DOCUMENT element marks a single Instance Document. Typically an Instance Document
represents the binding of layout information (e.g. a template) and a record of data from some data
set (e.g. a database). Example: when printing personalized information for people on a mailing list,
the Document tag delimits each individual set of pages that will be sent to one recipient on the list.

A Document may be larger or smaller than one sheet of substrate. The Document may be hundreds
of pages long or one page, and in either case, each page could be any size, from a full press
sheet to something as small as a postage stamp, so that many Documents could be printed on a
single sheet. The term “Document” is thus not a physical term but a logical one.

The default is to print Instance Documents in the same sequence as they appear in the PPML stream,
unless the Consumer is specifically instructed to do otherwise, e.g. via a REPEAT structure.

4.4.2 Model

DOCUMENT (SUPPLIED_RESOURCES?,
REQUIRED_RESOURCES?,
PAGE_DESIGN?, PRIVATE_INFO*,
(TICKET_SET | TICKET_REF | REUSABLE_OBJECT | SEGMENT_ARRAY |
PAGE)+)

4.4.3 Attributes

Attribute

Required
/Optional

Type

Description

Label Optional String An identifying label for this Document.

Dimensions Optional Number
× 2

Width and height of pages in this Document, in PPML units.
Example: for a U.S. letter page, Dimensions="612 792".

Use of this attribute is no longer recommended. Use the
PAGE_DESIGN or PAGE_LAYOUT element instead. This
attribute is ignored if a PAGE_DESIGN or PAGE_LAYOUT
element is in effect. If no such element is in effect, this attribute is
equivalent to <PAGE_DESIGN TrimBox="0 0 w h"/>

PageCount Optional Integer Number of pages in the document. If this attribute is used, it must
be accurate; if the actual page count is different, the result is an
error.

DocumentCopies Optional Integer How many copies to print of this Instance Document. (If the
current PRINT_LAYOUT element has an NCopies attribute,
the total copies printed will be NCopies times
DocumentCopies.)

4.4.4 Context

The DOCUMENT element occurs only within a DOCUMENT_SET element.

PPML Specification Version 2.1 July 31, 2002

Page 18 Copyright 2002 PODi www.podi.org

4.5 The <PAGE> Element

4.5.1 Description

The PAGE element delimits the contents of each individual page in each Instance Document.

4.5.2 Model

PAGE (SUPPLIED_RESOURCES?,
REQUIRED_RESOURCES?,
PAGE_DESIGN?,
PRIVATE_INFO*,
(TICKET_SET | TICKET_REF)*,
(REUSABLE_OBJECT | SEGMENT_ARRAY | MARK)*)

4.5.3 Attributes

Attribute

Required
/Optional

Type

Description

Label Optional String An identifying label for this Page.

Dimensions Optional Number
× 2

Width and height of this Page, in PPML units. Example: for a
U.S. letter page, Dimensions="612 792".

Use of this attribute is no longer recommended. Use the
PAGE_DESIGN or PAGE_LAYOUT element instead. This
attribute is ignored if a PAGE_DESIGN or PAGE_LAYOUT
element is in effect. If no such element is in effect, this attribute
is equivalent to <PAGE_DESIGN TrimBox="0 0 w h"/>.

4.5.4 Context

The PAGE element appears only within a DOCUMENT element.

4.5.5 Blank pages

A PAGE element that does not contain any MARK elements instructs the Consumer to print a blank
page.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 19

TrimBox:
Finished page

= 8½ x 11”

BleedBox =
9 x 11½”
(1/4” bleed all sides)

PPML page origin
(locates the finished

page rectangle in the
PPML coordinate system)

(80,80)

+
(0,0) Origin of PPML

coordinate system

4.6 The <PAGE_DESIGN> Element

4.6.1 Description

The PAGE_DESIGN element specifies the finished rectangular area of a Page as well as optional
bleed box information. Examples:

<PAGE_DESIGN TrimBox="0 0 612 792"
 BleedBox="-18 -18 630 810"
 />

The same page, with its origin offset from
the origin of the PPML coordinate system:

<PAGE_DESIGN TrimBox="80 80 692 872"
 BleedBox="62 62 710 890"
 />

The “Trim Box”

The required TrimBox attribute indicates the rectangular region of interest of the page design
and defines the intended finished page size. The TrimBox origin is defined in the PPML coordinate
system which is the same coordinate system in which all marks for the page are specified.

This information is useful to a PPML processor such as a PPML viewer, page proofer, or imposition
layout tool only interested in page design definitions. An imposition tool, for example, may use the
TrimBox information as the description of the intended finished page design, and use its dimensions
to locate cut marks on imposed sheets as needed.

The “Bleed Box”

The optional BleedBox attribute indicates that page content extends outside of the design rectangle
specified by the TrimBox attribute and recommends to a Consumer, such as an imposition
processor, a preferred bleed extent.

The BleedBox attribute if specified must completely contain the rectangular region defined by the
TrimBox or be equal to it.

If no BleedBox is specified then no hint is provided to the consumer of the existence of bleed edges
of the intended finished page.

TrimBox:
Finished page

= 8½ x 11”

BleedBox =
9 x 11½”
(1/4” bleed all sides)

PPML page origin
(locates the finished

page rectangle in the
PPML coordinate system)

(0,0)
+

 Origin of PPML
coordinate system

PPML Specification Version 2.1 July 31, 2002

Page 20 Copyright 2002 PODi www.podi.org

4.6.2 Model

PAGE_DESIGN EMPTY

4.6.3 Attributes

Attribute

Required
/Optional

Type

Description

TrimBox Required Number × 4 Coordinates, in 1/72”, of the page content area.

BleedBox Optional Number × 4 Coordinates, in 1/72”, of the page’s bleed area.

4.6.4 Context

The PAGE_DESIGN element appears within PPML, DOCUMENT_SET, DOCUMENT and PAGE.

4.6.5 Page orientation

All dimensions in the attributes are to be listed in “upright” orientation. For instance, a portrait
letter-size page will have PAGE_DESIGN TrimBox="0 0 612 792" and a landscape letter-size
page will have PAGE_DESIGN TrimBox="0 0 792 612". Thus, no separate Orientation
attribute is needed.

Note that any page may be rotated later when it is used in imposition (see Chapter 6:). But the
page itself, and its content, are independent of imposition and printing.

4.6.6 Similarity with PAGE_LAYOUT in imposition

PAGE_DESIGN expresses the designer’s intent regarding the finished dimensions of the page. As
described in Chapter 6, later production processes may involve placing pages onto sheets
(“imposition”). The imposition may be expressed using PPML’s imposition features or by using
alternate imposition layout expression formats.

Note that PPML’s imposition includes a PAGE_LAYOUT element, which appears similar to
PAGE_DESIGN because both have a TrimBox and BleedBox attribute. The difference is that
PAGE_DESIGN only expresses the designer’s intent, in the context of the page content stream
(PPML, DOCUMENT_SET, DOCUMENT, PAGE), while PAGE_LAYOUT defines the dimensions
of page cells (see section 6.9) in the context of imposition (assigning pages to sheets). Therefore
the TrimBox and BleedBox attributes of PAGE_LAYOUT require a graphical clipping
behavior, and the TrimBox and BleedBox attributes of PAGE_DESIGN do not – they leave
the determination of that behavior to the consuming PPML processor.

At least one PAGE_LAYOUT or PAGE_DESIGN element must be in effect for each Page.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 21

4.7 The <CONFORMANCE> Element

4.7.1 Description

The optional CONFORMANCE element declares that the enclosing dataset conforms to a specific
PPML subset. (See Chapter 10: Conformance Subsets.) The model allows multiple
CONFORMANCE elements, since it’s conceivable that a future dataset could conform to more than
one subset.

This element occurs at the start of the model for the PPML element so that a Consumer can know,
from the very beginning, that nothing in the dataset exceeds the restrictions of a defined subset.

The CONFORMANCE element simply informs the PPML Consumer that the dataset meets the subset’s
requirements. The Consumer may use this information, but is not required to do anything with it.

Parties who wish to define a subset should register their desired Subset string with PODi. Write to
ppmlinfo@podi.org for information.

4.7.2 Model

CONFORMANCE EMPTY

4.7.3 Attributes

Attribute

Required/
Optional

Type

Description

Subset Required String Declares which PPML subset the dataset conforms to.
The identifying string for each defined subset will be
stated in the section of this specification that defines the
subset.

Level Optional String Optional qualifier, further identifying the features within
the subset.

4.7.4 Context

CONFORMANCE can occur in PPML.

4.7.5 Example

The following is the start of a dataset that conforms to two hypothetical subsets:
 <PPML>

 <CONFORMANCE Subset="GA"/>
 <CONFORMANCE Subset="TR"/>
 <SUPPLIED_RESOURCES ...>

 ...

mailto:ppmlinfo@podi.org

PPML Specification Version 2.1 July 31, 2002

Page 22 Copyright 2002 PODi www.podi.org

4.8 The <TICKET> element

4.8.1 Description

A TICKET element may be used to explicitly identify the job ticket data for the dataset. The ticket
data may either be stored inline within the TICKET element, or stored in a separate file and
accessed by an external reference. See examples and application notes below.

If a TICKET element is not present in a PPML instance, all TICKET_REF elements defined in that
PPML instance are considered references to ticket data implicitly identified at the application level,
such as the PPML job package (see section 4.9 for more information about TICKET_REF).

4.8.2 Model

TICKET (EXTERNAL_DATA | INTERNAL_DATA)

4.8.3 Attributes

Attribute

Required
/Optional

Type

Description

Format Required String Unique identifier of a previously defined ticket item.

4.8.4 Context

A single TICKET element can occur in the root PPML element prior to the definition of the first
DOCUMENT_SET element.

4.8.5 Examples

The following examples illustrate methods of including JDF job ticket data. It is important to point
out that although these examples use JDF syntax, the PPML language itself does not specify any
particular ticket data format.

Example 1: Reference to an external job ticket file

In this method, the TICKET element contains a single EXTERNAL_DATA element, which
references an external job ticket file.

<TICKET Format="application/jdf">
<EXTERNAL_DATA Src="MyTicket.jdf"/>

</TICKET>

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 23

Example 2: Internal ticket data

In this method the entire ticket file is imported into the PPML dataset.
<TICKET Format="application/jdf">

<INTERNAL_DATA Encoding="text/xml">
<jdf:JDF xmlns:jdf="http://www.CIP4.org/JDFSchema_1">

<jdf:JDF Class="Product" ... >
...

</jdf:JDF>
</jdf:JDF>

</INTERNAL_DATA>
</TICKET>

4.8.6 Considerations about internal vs. external ticket data:

The external method is expected to be preferred in most situations.

The internal method forfeits a key advantage of the external method: neither the ticket nor the
dataset can be reused independently of each other. The advantage is that the dataset and ticket
are in a single file, reducing the chances of their becoming separated during production.
Additional considerations:

• Since PPML workflows typically involve many other external files, the internal job ticket method
is not expected to provide a substantial change in reliability of the workflow. (In either case,
the shop must still keep track of the files that comprise a dataset such as a TLC package.)

• It is expected that in some cases, the ticket data may be edited in prepress. In those cases, it
would be more convenient to simply edit a separate ticket data file since it will be much smaller
than a PPML file containing the ticket data.

• Similarly, if the ticket data is to be edited, it’s safer to keep it separate from the dataset, to
eliminate any chance of unintentionally modifying the dataset.

PPML Specification Version 2.1 July 31, 2002

Page 24 Copyright 2002 PODi www.podi.org

4.9 The <TICKET_REF> element

4.9.1 Description

A TICKET_REF can occur in various places within the PPML hierarchy and is used to reference
uniquely identified pieces of ticket information defined in the ticket data associated with the PPML
data. The ticket data itself is either explicitly identified by a TICKET element (refer to section 4.8),
or in the absence of a TICKET element, identified implicitly from the context of the dataset at the
application level (for instance in a package as described in Appendix D: “Packaging PPML
datasets for transport using ZIP files or removable media).”

These pieces of ticket information referenced from within the PPML hierarchy may be used to
specify characteristics of the print product definition such as media type and single and two sided
printing for the various pages, as well as process control parameter resources, or any other
production information unrelated to the definition a PPML page’s content. The semantics of the
information referenced by TICKET_REF are not defined by this specification and are instead
defined in the specification of the particular format identified by the value of the Format attribute of
the TICKET element.

A TICKET_REF element may have either a Ref attribute or an ExtIDRef attribute, but not
both. ExtIDRef directly references a single piece of ticket information; Ref can indirectly
reference one or more pieces of ticket information, by referencing a previously defined
TICKET_SET element.

4.9.2 Model

TICKET_REF EMPTY

4.9.3 Attributes

Attribute

Required
/Optional

Type

Description

ExtIDRef Optional String Unique identifier of a previously defined ticket item.

Ref Optional String Unique identifier of a previously defined Ticket Set element.

4.9.4 Occurs in

The TICKET_REF element can occur in PPML, DOCUMENT_SET, DOCUMENT, PAGE,
TICKET_SET, and TICKET_STATE.

4.9.5 Scope

The scope in which the ticket data referenced by a TICKET_REF takes effect is implied by the
location of the TICKET_REF in the PPML hierarchy; there is no explicit Scope attribute. Any
ticket data specified by a TICKET_REF only affects content that occurs after the TICKET_REF; the
ticket data stays in effect until the end of the containing element, or until overridden by a
subsequent TICKET_REF.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 25

A resource will expire at a place that is determined by where its Ticket Ref occurs. Here are two
examples in which a Ticket Ref accesses a duplex-printing resource in two different ways:

<!-- Example 1 ->
<DOCUMENT_SET>

<TICKET_REF ExtIDRef="TwoSidedLong".../>
<!-- The above duplexing instruction persists to the end of the

containing element – the current DOCUMENT_SET, including all
subsequent documents, or until overridden by another duplexing
instruction -->

<DOCUMENT.../>
<DOCUMENT.../>
<DOCUMENT.../>

<!-- Example 2 ->
<DOCUMENT_SET>

<DOCUMENT.../>
<DOCUMENT...>

<TICKET_REF ExtIDRef="TwoSidedLong".../>
<!-- The above persists only to the end of the containing element

(DOCUMENT, in this case), at which point the previous duplexing
state, if any, returns -->

</DOCUMENT>
<DOCUMENT.../>
:

4.9.6 Inheritance of ticket information

Ticket inheritance between document structure elements

The activated resource shall be inherited by lower levels of the PPML hierarchy (PPML,
DOCUMENT_SET, DOCUMENT, PAGE, MARK), unless it is later overridden by other TICKET_REF
elements at those lower levels. Below is an example, presuming that the job ticket has defined two
resources whose IDs are Media_White (the default for this ticket) and Media_Goldenrod:
<!-- at first, the initial setting "Media_White" is active for all documents-->

<DOCUMENT...>
<PAGE.../>
<PAGE...>

<TICKET_REF ExtIDRef="Media_Goldenrod"/>
<!-- Goldenrod applies to this page only -->

</PAGE>
<PAGE.../>

</DOCUMENT>

<DOCUMENT...>

<TICKET_REF ExtIDRef="Media_GoldenrodMedia"/>
<!-- Goldenrod applies to all pages in the document -->
<PAGE.../>
<PAGE.../>
<PAGE...>

<TICKET_REF ExtIDRef="Media_WhiteMedia"/>
<!-- White applies to this page only -->

</PAGE>
<PAGE...>

<!-- back to Goldenrod -->

PPML Specification Version 2.1 July 31, 2002

Page 26 Copyright 2002 PODi www.podi.org

</PAGE>
</DOCUMENT>
<!-- initial job setting "White" is again active -->

Ticket inheritance in definition of reusable content:

Ticket information in Reusable Object definitions is independent of ticket information in the dataset.

• REUSABLE_OBJECT elements do not inherit ticket resources from their XML parents in the PPML
stream. Rather, each REUSABLE_OBJECT element inherits the initial settings of the job ticket, if
any, specified in the dataset’s TICKET element. Within the REUSABLE_OBJECT element, any
subsequence TICKET_REFs are relative to those initial values.

• TICKET_REFs inside a REUSABLE_OBJECT element have no effect on the PPML Pages,
Documents, etc. in which they occur.

Example: Assume that a dataset’s job ticket, specified in its TICKET element, has two resources
that activate or deactivate a feature called “RIPfeature12,” and those resource have IDs
Feature12on and Feature12off. Assume the ticket establishes an initial setting of
Feature12off.

<!-- at first, "Feature12off" is active for all documents-->

<DOCUMENT...>
<TICKET_REF ExtIDRef="Feature12on"/>
<DOCUMENT...>

<REUSABLE_OBJECT...>
...
<OCCURRENCE_LIST>

<OCCURRENCE....>
<!-- This OCCURRENCE element contains no TICKET_REF for

Feature12. The initial setting for “RIPFeature12” will be
the initial setting in the job ticket. If this dataset is
processed with different job tickets, the setting for
RIPfeature12 on this OCCURRENCE may vary. -->

...
</OCCURRENCE>
<OCCURRENCE....>

<!-- This OCCURRENCE element does contain a TICKET_REF for
Feature12. The setting for RIPfeature12 on this OCCURRENCE
is known. -->

<TICKET_REF ExtIDRef=”Feature12off”/>
</OCCURRENCE>

</OCCURRENCE_LIST>
</REUSABLE_OBJECT>
<!-- The document content stream resumes; TICKET_REFs within the

REUSABLE_OBJECT element are ignored -->
<PAGE...> ...

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 27

4.9.7 Recommended Feature ID Strings

The following are recommended (not mandatory) ExtIDRef strings for controlling features that
are commonly available on digital print equipment. These are the ID strings used for these features
in the PPML Job Ticket specification, which is based on JDF, the recommended format for graphic
arts applications.

This list in no way limits what features may be accessed through the PPML TICKET_REF element
in any given ticket format. This list only suggests a convention for the features shown here.

The detailed semantics implied by each of these strings are implementation-dependent; these strings
are simply recommended as a way of accessing the feature if it exists. It is expected that in many
cases, detailed machine setup will be performed by a person operating the equipment, so these
“on/off” controls simply activate or deactivate the feature, however it has been set up.

Feature Action Recommended ExtIDRef

Trimming Enable ExtIDRef="TrimmingOn"

 Disable ExtIDRef="TrimmingOff"

Collate Enable ExtIDRef="CollateEnabled"

 Disable ExtIDRef="CollateDisabled"

Folding Enable ExtIDRef="SaddleFold"

 Disable ExtIDRef="NoFold"

Duplex Long Edge ExtIDRef="TwoSidedLongEdge"

 Short Edge ExtIDRef="TwoSidedShortEdge"

 Off ExtIDRef="OneSided"

Output order First page first, face up ExtIDRef="SameOrderFaceUp"

 First page first, face down ExtIDRef="SameOrderFaceDown"

 Last page first, face up ExtIDRef="ReverseOrderFaceUp"

 Last page first, face down ExtIDRef="ReverseOrderFaceDown"

Stitching (stapling) SaddleStitch ExtIDRef="StitchSaddle"

 Top Left ExtIDRef="StitchTopLeft"

 Bottom Left ExtIDRef="StitchBottomLeft"

 Top Right ExtIDRef="StitchTopRight"

 Bottom Right ExtIDRef="StitchBottomRight"

 Dual Right Edge ExtIDRef="StitchDualRightEdge"

 Dual Left Edge ExtIDRef="StitchDualLeftEdge"

 Dual Top Edge ExtIDRef="StitchDualTopEdge"

 Dual Bottom Edge ExtIDRef="StitchDualBottomEdge"

 None ExtIDRef="StitchNone"

PPML Specification Version 2.1 July 31, 2002

Page 28 Copyright 2002 PODi www.podi.org

Feature Action Recommended ExtIDRef

Auto booklet From unimposed pages ExtIDRef="BookletWithReorder"

making From pre-imposed sheets ExtIDRef="BookletPreOrdered"

 Off ExtIDRef="BookletOff"

Jogging (offset) Enable ExtIDRef="JogOffsetOn"

 Disable ExtIDRef="JogOffsetOff"

Holemaking 3 hole left ExtIDRef="HoleType3HoleLeft"

 3 hole right ExtIDRef="HoleType3HoleRight"

 2 hole top ExtIDRef="HoleType2HoleTop"

 2 hole bottom ExtIDRef="HoleType2HoleBottom"

 None ExtIDRef="HoleTypeNone"

Color model Color (CMYK) ExtIDRef="CMYKColorModel"

 Device Gray ExtIDRef="DeviceGray"

Black Overprint Enable ExtIDRef="BlackOverprintEnabled"

 Disable ExtIDRef="BlackOverprintDisabled"

Spot Color Declare a named color to
be a spot color (so it is not
color-separated)

ExtIDRef="SpotColor_MyColor"
(Substitute the actual color name after the underscore)

Screen selector Identify a screen definition
to be used in processing of
images

ExtIDRef="ScreenSelector_MyScreen"
(Substitute the actual screen name after the underscore)

Media selection Identify media to use
(A media name, location, or
other identifier that’s defined in
the job ticket or is otherwise
known to the Consumer)

ExtIDRef="Media_MyMedia"
(Substitute the actual media name after the underscore)

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 29

4.10 The <TICKET_SET> element

4.10.1 Overview

The TICKET_SET element is an aggregation of several TICKET_REF elements.

4.10.2 Model

TICKET_SET (TICKET_REF*)

4.10.3 Attributes

Attribute

Required
/Optional

Type

Description

ID Required String Unique identifier of this Ticket Set.

4.10.4 Occurs in

The TICKET_SET element can occur in PPML, DOCUMENT_SET, DOCUMENT, PAGE, MARK,
REUSABLE_OBJECT and OCCURRENCE_LIST.

PPML Specification Version 2.1 July 31, 2002

Page 30 Copyright 2002 PODi www.podi.org

4.11 The <TICKET_STATE> element

4.11.1 Overview

The TICKET_STATE element provides hints during the definition of Reusable Object Occurrences
regarding Ticket States that may be in effect when the Occurrence is referenced.

The Ticket State is the state of the Consumer relative to all parameters that can be controlled by a
Job Ticket. This list of parameters will vary from Consumer to Consumer, because different products
have different features that a Job Ticket can control.

Note that the Ticket State of a Consumer will vary as jobs are produced. Examples:

o immediately upon power-up the system will have one Ticket State

o an operator may change some RIP settings manually, e.g. set the resolution to 600 dpi

o after the system processes a Job Ticket the state will usually be different

o often, parameters will change while jobs are running.

When the Occurrence is subsequently referenced with OCCURRENCE_REF, the Ticket State at that
time should match one of the Ticket States listed in the OCCURRENCE definition. If it does not, the
Consumer may not have had adequate information about how to prepare the Occurrence at time
of definition, so the result will be implementation-dependent. See section 5.14.8 for more
information about how Consumers may process Occurrences.

4.11.2 Model

TICKET_STATE (TICKET_REF*)

4.11.3 Attributes

None.

4.11.4 Context

The TICKET_STATE element appears only in OCCURRENCE.

4.11.5 Computing the current Ticket State

The Ticket State defined by a TICKET_STATE element is:

o the Ticket State of the Consumer after processing the job ticket specified in the TICKET
element, plus

o the effect of the TICKET_REFs contained in the TICKET_STATE element.

Note that each TICKET_STATE element defines a different, separate Ticket State; the elements are
not cumulative. See example below.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 31

4.11.6 Example: multiple TICKET_STATE elements in an OCCURRENCE

Each TICKET_STATE element defines a different, separate Ticket State. This example illustrates two
different parameters that often affect processing of Occurrences: ScreenSelector and Color Model.
Presume that the current Job Ticket contains IDs “ScreenSelector_AdobeAccurateScreens” and
“CMYKColorModel”.
<REUSABLE_OBJECT>

<OBJECT Position=...>
...

</OBJECT>
<VIEW/>
<OCCURRENCE_LIST>

<OCCURRENCE Name=...>
<VIEW/>
<TICKET_STATE>

<!--This Ticket State is the state after the job ticket was first
processed, plus the effect of the CMYKColorModel Ticket Ref and
the effect of the ScreenSelector Ticket Ref. -->

<TICKET_REF ExtIDRef=”CMYKColorModel”/>
<TICKET_REF ExtIDRef=”ScreenSelector_AdobeAccurateScreens”/>

</TICKET_STATE>
<TICKET_STATE>

<!--This Ticket State is the state after the job ticket was first
processed, plus the effect of the CMYKColorModel Ticket Ref.
The ScreenSelector for this Ticket State is inherited from the
dataset’s original Ticket State, whatever that may be.-->

<TICKET_REF ExtIDRef=”CMYKColorModel”/>
</TICKET_STATE>
<TICKET_STATE>

<!--This Ticket State is the state after the job ticket was first
processed, plus the effect of this ScreenSelector Ticket Ref.
The Color Model for this Ticket State is inherited from the
dataset’s original Ticket State, whatever that may be.-->

<TICKET_REF ExtIDRef=”ScreenSelector_AdobeAccurateScreens”/>
</TICKET_STATE>

</OCCURRENCE>
</OCCURRENCE_LIST>

</REUSABLE_OBJECT>

PPML Specification Version 2.1 July 31, 2002

Page 32 Copyright 2002 PODi www.podi.org

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 33

Chapter 5:
The PPML page

5.1 The PPML Coordinate System

The PPML coordinate system is the same as the Cartesian coordinates used by PostScript®:

• the origin (0,0) is at the bottom left corner of the page

• units are 1/72 of an inch

• x increases to the right

• y increases upward.

All PPML units are base 10. The following definitions apply:

Integer: In PPML, an “integer” is specified as an optional sign character (‘+’ or ‘−’, with ‘+’ being
the default) followed by one or more digits “0” to “9”. The range for a PPML integer encompasses
(at a minimum) −2147483648 to +2147483647.

Number: In PPML, a “number” is either an “integer” or an optional sign character (‘+’ or ‘−’, with
‘+’ being the default) followed by zero or more digits “0” to “9” followed by a dot (.) followed by
zero or more digits “0” to “9” with at least one digit required either before or after the dot. The
digits after the dot may be followed by an optional exponent. The exponent is the letter ‘E’ or ‘e’
followed by an “integer.” A “number” has the capacity for at least a single-precision floating point
number (see [ICC32]) and has a range (at a minimum) of −3.4e+38F to +3.4e+38F.

[ICC32] refers to “ICC Profile Format Specification, version 3.2”, 1995. Available at
ftp://sgigate.sgi.com/pub/icc/ICC32.pdf.

5.2 A Page contains Marks

PPML constructs a page image by placing a series of Marks on the page. Marks can consist of
graphics, text and/or images defined in some external content data format. A Mark can reference
either non-reusable or reusable content data. Reusable content data are data which may have
multiple occurrences in a PPML page, document, document set, dataset or environment. The PPML
code defines the data as reusable, which permits the PPML consumer to cache these items in some
format which may permit highly efficient reproduction.

ftp://sgigate.sgi.com/pub/icc/ICC32.pdf

PPML Specification Version 2.1 July 31, 2002

Page 34 Copyright 2002 PODi www.podi.org

5.3 The <MARK> Element

5.3.1 Description

The MARK element specifies the actual placement of marks on a page. It is used either for the
placement of Objects (section 5.7) or for placing an Occurrence of a Reusable Object (section
5.12).

The Consumer places MARKs on a page in the order in which they are listed in the PAGE
element. MARKs later in a PAGE element are placed on top of the earlier ones.

Each MARK’s Position attribute defines its location on the page, while the associated VIEW
allows selecting (clipping) and transforming (e.g. scaling) the MARK to create the desired page
content.

Conceptually, each MARK defines a rectangular raster image that consists of “marked” and
“transparent” pixels. Each MARK is rasterized independently from any other MARKs on the page.
When a MARK overlaps MARKs previously placed on the page, its marked pixels completely
obscure the previous MARKs’ pixels, and the transparent pixels leave the previous MARKs’ pixels
unaffected. Which pixels in a MARK’s raster image are marked and which are transparent
depends on the MARK’s content data and the content data format, and is outside of the scope of
the PPML Specification.

Notes:

1. In the case of PostScript and PDF content data, the MARK’s raster image starts out
consisting of transparent pixels. Only those pixels marked by imaging operators are
“marked” in the MARK’s raster image.

2. In the case of non-transparent TIFF content data, the original rectangular area defined by
the TIFF source is completely marked. If the data is not rotated by a VIEW transformation,
the rectangular raster image resulting from the MARK completely obscures every pixel
beneath it. If the data is rotated, then only the pixels beneath the parallelogram resulting
from the transformed TIFF data are obscured.

3. Other content formats likewise include the concept of transparent (or “clear”) pixels as well
as white and colored pixels. Any such transparent pixels will allow pixels from previous
MARKs to show through unaffected.

Some content formats describe pixels (or objects) that are only partially transparent. The interaction
of these pixels with other pixels or objects defined by the same content data from a single SOURCE
used to generate the raster image for a particular MARK is defined by the content data format, and
is outside of the scope of the PPML specification. However, any such pixels are considered
“marked” for the purposes of determining the effect of MARK overlaps: if the raster image for a
MARK contains “partially transparent” pixels that overlap pixels from a previous MARK, the
“partially transparent” pixels of the MARK that is on top are considered as “marked” pixels and
completely obscure the previous MARK’s pixels.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 35

5.3.2 Model

MARK ((VIEW?, OBJECT+) | OCCURRENCE_REF | SEGMENT_REF)

5.3.3 Attributes

Attribute

Required
/Optional

Type

Description

Position Required Number × 2 Specifies a translation to be applied to the object's
coordinate space in order to position the object on the
page. This translation is concatenated with any prior
transformations applied to the original data.

5.3.4 Context

MARK can occur in PAGE.

5.3.5 Implementation note

The Position attribute on MARK and OBJECT defines the placement of these objects. Note
that this placement is also affected by other transformations applied to the elements. For example, if
the OBJECT is a rectangle whose lower left corner is at (0, 0), that corner will be placed at the
point specified by Position. If the rectangle’s upper left corner is at (0, 0), that corner will be
placed at the Position point.

PPML Specification Version 2.1 July 31, 2002

Page 36 Copyright 2002 PODi www.podi.org

5.4 The <VIEW> Element

5.4.1 Description

The VIEW element combines a TRANSFORM with a CLIP_RECT to form a description of how a
particular set of content data is to be rendered.

5.4.2 Model

VIEW (TRANSFORM?, CLIP_RECT?)

5.4.3 Attributes

None.

5.4.4 Context

VIEW can occur in MARK, OBJECT, REUSABLE_OBJECT and OCCURRENCE.

5.4.5 Empty VIEW elements

An empty VIEW element (<VIEW/>) means the identity transform with no clipping.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 37

5.5 The <TRANSFORM> Element

5.5.1 Description

The TRANSFORM element represents a two-dimensional homogeneous transformation matrix.

5.5.2 Model

TRANSFORM EMPTY

5.5.3 Attributes

Attribute

Required
/Optional

Type

Description

Matrix Required Number × 6 Supplies the components of a two dimensional
homogeneous transformation matrix. See the PostScript
Language Reference Manual for details.

5.5.4 Context

TRANSFORM can occur in VIEW.

PPML Specification Version 2.1 July 31, 2002

Page 38 Copyright 2002 PODi www.podi.org

5.6 The <CLIP_RECT> Element

5.6.1 Description

The CLIP_RECT element specifies the corners of a rectangle to be used for clipping the content
data with which the CLIP_RECT is associated.

5.6.2 Model

CLIP_RECT EMPTY

5.6.3 Attributes

Attribute

Required
/Optional

Type

Description

Rectangle Required Number × 4 Supplies the x and y coordinates of the lower left and
upper right corners of a rectangle to be used for clipping.

5.6.4 Context

CLIP_RECT can occur in VIEW.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 39

5.7 The <OBJECT> Element

5.7.1 Description

The OBJECT element associates a VIEW with a SOURCE to specify the clip, scale and
orientation of an item of appearance data within a MARK or a REUSABLE_OBJECT.

The Position attribute specifies a translation to be applied to the SOURCE’s coordinate space
in order to position the SOURCE in relation to other SOURCE elements within a MARK or
REUSABLE_OBJECT. This translation is concatenated with any prior transformations applied to the
original data. (See the implementation note regarding object origin in section 5.3.5.)

5.7.2 Model

OBJECT (SOURCE, VIEW?)

5.7.3 Attributes

Attribute

Required
/Optional

Type

Description

Position Required Number × 2 Specifies a translation to be applied to the object's
coordinate space in order to position the object on the
page. This translation is concatenated with any prior
transformations applied to the original data.

5.7.4 Context

The OBJECT element can occur in MARK and REUSABLE_OBJECT.

PPML Specification Version 2.1 July 31, 2002

Page 40 Copyright 2002 PODi www.podi.org

5.8 The <SOURCE> Element

5.8.1 Description

The SOURCE element defines a set of one or more content elements (EXTERNAL_DATA,
INTERNAL_DATA), of a single format, to be collected into a single sequence of appearance data.
The content data from all enclosed elements are concatenated in the order the elements appear,
and are processed as a single unit by the format processor, the same as if all the data had been
submitted to the Consumer as a single object.

Note that some file format specifications allow non-content data, which must be removed by
Consumers that accept that format. For instance, the format type for EPS files is
application/postscript, but Windows EPS files contain a non-PostScript binary preview (See
the PostScript Language Reference Manual, appendix H.5.2.), which the Consumer system must
remove.

5.8.2 Model

SOURCE ((INTERNAL_DATA | EXTERNAL_DATA)+ | EXTERNAL_DATA_ARRAY)

5.8.3 Attributes

Attribute

Required
/Optional

Type

Description

Format Required Keyword Indicates format of the data (e.g., PostScript, PDF, TIFF,
etc.). Value: any format name registered with the Internet
Assigned Numbers Authority (IANA).6

Dimensions Required Number × 2 The width w and height h of a rectangle that encloses the
content data contained in this element. See 5.8.5,
“Dimensions and ClippingBox” below.

ClippingBox Optional Number × 4 Supplies the coordinates of the lower left and upper right
corners of the rectangle containing the desired area of the
content data, in PPML default coordinates.

5.8.4 Context

SOURCE can occur in OBJECT.

5.8.5 Dimensions and ClippingBox

• For SOURCE elements whose content format is dimensionless, the Dimensions attribute states
what width and height the Consumer should assume.

• If ClippingBox is not present, Dimensions specifies an implicit clipping rectangle
“0 0 w h”.

6 These formats are listed at http://www.isi.edu/in-notes/iana/assignments/media-types/media-types.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 41

• If both Dimensions and ClippingBox are present, both of them clip. The effective
clipping boundary is the intersection of the clipping rectangle implied by Dimensions and
the specified ClippingBox.

PPML Specification Version 2.1 July 31, 2002

Page 42 Copyright 2002 PODi www.podi.org

5.9 The <EXTERNAL_DATA> Element

5.9.1 Description

An EXTERNAL_DATA element identifies, by location and access method, a single content datum
(e.g. a source file or job ticket). A content appearance datum, which may be in any of the
supported formats (e.g., PostScript, PDF, PCL, TIFF, etc.), can be used by itself or in combination
with other content elements to construct components which appear on the printed page.

5.9.2 Model

EXTERNAL_DATA EMPTY

5.9.3 Attributes

Attribute

Required
/Optional

Type

Description

Src Required URI URI (Uniform Resource Identifier) string identifying the
external data. See RFC2396 for full details of URIs.7

Checksum Optional String Hexadecimal-encoded string, provided as a hint to the
Consumer. Consumers are not required to support this
attribute.

ChecksumType Optional String Identifies the type of checksum. If this attribute is present,
the Checksum attribute must also be present.
Default=”MD5”.

SourceUsage Optional Keyword "Single" or "Multiple" or "Unknown" (default).
A hint to the Consumer: will data from this source be used
only once, or in other elements? See 5.9.5, “The
SourceUsage attribute” below.

5.9.4 Context

EXTERNAL_DATA may occur within SOURCE and TICKET.

5.9.5 The SourceUsage attribute

For content appearance data, SourceUsage="Multiple" means the data in this source file
may be used again later. Thus, the Consumer may wish to cache the unprocessed source data to
avoid retrieving it again later.

7 RFC2396 is at www.ietf.org/rfc/rfc2396.txt. A good overview of URIs and URLs is at

www.w3.org/Addressing/Overview.html.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 43

5.10 The <EXTERNAL_DATA_ARRAY> Element

5.10.1 Description

An EXTERNAL_DATA_ARRAY element identifies, by location and access method, a multi-segment
source datum. A multi-segment source is one that contains multiple content descriptions that can be
accessed individually, e.g. a multi-page PostScript or PDF file.

Only one EXTERNAL_DATA_ARRAY element may be used in a SOURCE element.

5.10.2 Model

EXTERNAL_DATA_ARRAY EMPTY

5.10.3 Attributes

Attribute

Required
/Optional

Type

Description

Src Required URI See section 5.9.3, attributes of EXTERNAL_DATA.

Checksum Optional String Hexadecimal-encoded string, provided as a hint to the
Consumer. Consumers are not required to support this
attribute.

ChecksumType Optional String Identifies the type of checksum. If this attribute is present,
the Checksum attribute must also be present.
Default=”MD5”.

Index Optional Integer Indicates which segment is to be selected for use in this
instance. The default (and minimum) value is "1", which
corresponds to the very first segment of the referenced
source file.

IndexUsage Optional Keyword Single or Multiple or Unknown (default). A hint to
the Consumer, meaning “will additional segments be used
later in the same graphics state?” See section 5.10.5,
“The IndexUsage attribute” below.

5.10.4 Context

EXTERNAL_DATA_ARRAY may occur within SOURCE.

5.10.5 The IndexUsage attribute

IndexUsage= "Multiple" means that although this instance only uses one of the segments in
this multi-segment file, additional instances of EXTERNAL_DATA_ARRAY may call for other
segments. Thus, as an optimization, a Consumer may wish to process all the segments in the
source, not just the one segment specified by the Index attribute.

PPML Specification Version 2.1 July 31, 2002

Page 44 Copyright 2002 PODi www.podi.org

5.11 The <INTERNAL_DATA> Element

5.11.1 Description

An INTERNAL_DATA element is the same as an EXTERNAL_DATA element except that it
contains the actual data, instead of referring to it. Therefore it has no Src attribute.

Like the content datum referred to by an EXTERNAL_DATA element, an INTERNAL_DATA
content datum may be in any of the supported formats (e.g., PostScript, PDF, PCL, TIFF, etc.) and
can be used by itself or in combination with other content elements to construct components which
appear on the printed page.

Note that the content data itself, contained in the INTERNAL_DATA element, must be valid XML
content – it must conform to the character sets identified in section 2.1.5, “Character sets.”

5.11.2 Model

INTERNAL_DATA ANY

5.11.3 Attributes

Attribute

Required
/Optional

Type

Description

Encoding Optional Keyword Encoding scheme of the data: None (default) or any
encoding name registered with the Internet Assigned
Numbers Authority (IANA).8 However, note that
Consumers are only required to support Base64.

CharacterSet Optional String Specifies the character set of the decoded data. For use
with text content or any other media type containing
characters. Value: any character set name registered with
the Internet Assigned Numbers Authority (IANA).9

Label Optional String Any arbitrary string to identify this element, for instance in
case an error message is necessary.

Creator Optional String Identifies the application that created this content.

5.11.4 Context

INTERNAL_DATA may occur within SOURCE and TICKET.

8 The valid encoding name strings are listed at http://www.isi.edu/in-notes/iana/assignments/transfer-

encodings.
9 The valid character set name strings are at http://www.isi.edu/in-notes/iana/assignments/character-sets.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 45

5.12 The <REUSABLE_OBJECT> Element

5.12.1 Description

The REUSABLE_OBJECT element defines a component of page appearance which is intended for
multiple use, and may therefore be stored by the PPML consumer in some optimized format.

Reusable Objects exist for efficiency: to store frequently used items so they can be accessed without
redundant processing. Each individual use (Occurrence) of a Reusable Object may have its own
different VIEW, but there may be some transformations that are shared. For instance, a photo may
be clipped and rotated, and then be scaled to several different sizes. The VIEW on the Reusable
Object could perform the clipping and rotating once; then several different Occurrences could be
defined, each with a VIEW that performs additional scaling.

5.12.2 Model

REUSABLE_OBJECT (OBJECT+, VIEW?, OCCURRENCE_LIST)

5.12.3 Attributes

None.

5.12.4 Context

REUSABLE_OBJECT can occur in PPML, DOCUMENT_SET, DOCUMENT and PAGE.

5.12.5 Note regarding TICKET_REF

See section 4.9.6, “Inheritance of ticket information,” for rules regarding inheritance of job ticket
information in REUSABLE_OBJECT elements.

PPML Specification Version 2.1 July 31, 2002

Page 46 Copyright 2002 PODi www.podi.org

5.13 The <OCCURRENCE_LIST> Element

5.13.1 Description

Within a REUSABLE_OBJECT definition element, the OCCURRENCE_LIST element declares
each viewing transformation which may be applied to the object, and may provide hints of the
relative importance of each transformation.

5.13.2 Model

OCCURRENCE_LIST (OCCURRENCE)+

5.13.3 Attributes

None.

5.13.4 Context

OCCURRENCE_LIST can occur in REUSABLE_OBJECT.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 47

5.14 The <OCCURRENCE> Element

5.14.1 Description

The OCCURRENCE element specifies the VIEW and relative importance with which a particular
rendition of a Reusable Object will occur. By specifying Occurrence information in the definition of
a Reusable Object, the PPML Producer facilitates optimization of rendering and storage by the
eventual Consumer.

Note that the element model contains no explicit statement of the dimensions of the content
image area that will be created when the Consumer generates this Occurrence. A Consumer that
wishes to anticipate the dimensions should do so by accumulating the clipping boxes defined in the
REUSABLE_OBJECT element.

5.14.2 Model

OCCURRENCE (VIEW?, TICKET_STATE*)

5.14.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Required String Name to be used when referring to this OCCURRENCE.
The name must be unique within the Occurrence’s scope
or environment; see 5.14.5, “Policies for Name collisions”
below.

Environment Required if Scope
="Global"; not
needed otherwise

String Specifies the environment in which a global object should
be defined. (There is no default environment.)

Scope Optional Keyword Specifies the scope of this object’s use. Possible values are
Global, PPML, DocSet, Document and Page.
By default, the scope is the containing element in which
the object is defined. A higher value may be specified in
this attribute, but a lower value is an error.

Overwrite Optional Boolean Defines what the Consumer should do if
Scope="Global" and the name already exists in the
specified Environment: Yes means “overwrite the
existing Occurrence”, No means “ignore this element.”
Default= No. This attribute has no meaning unless
Scope="Global".

Weight Optional Number A number from 1 (minimum importance) to 100
(maximum) describing, qualitatively, the relative
importance of this Occurrence. See 5.14.6, “Statistics
about Reuse: the Weight attribute.”

PPML Specification Version 2.1 July 31, 2002

Page 48 Copyright 2002 PODi www.podi.org

5.14.4 Context

The OCCURRENCE element can occur in OCCURRENCE_LIST.

5.14.5 Policies for Name collisions

The value of Name must be unique within the scope (or within the Environment, if Scope=
"Global"). The following policies define how the Consumer should handle the case where Name
already exists at the specified Scope:

• If Scope="Global" then the Overwrite attribute defines what action should be taken:
overwrite the existing attribute, or ignore this element?

• If Scope is not Global, an error occurs.

5.14.6 Statistics about Reuse: the Weight attribute

How efficiently a given system (Producer or Consumer) handles reusable content is expected to be
a major differentiating factor compared to other PPML systems. System designers are therefore
advised to give thought to efficient design regarding this feature.

Typically, when a PPML Consumer receives a Reusable Object definition, it will pre-process it (RIP
it) into the data format required by the target print engine, and then save the resulting Occurrences
somewhere (cache them), e.g. in RAM, on internal disk, or on some attached storage system.
Sometime later, in the same print run or some other run, the data stream will call for that
Occurrence by name, and the Consumer will be able to recall it from storage and image it without
pausing to process it “on the fly.”

A Consumer must make informed decisions about what to cache and for how long. A Consumer
with large amounts of RAM may be able to hold all of a job’s Occurrences in RAM at once; this
approach will usually produce the fastest possible throughput. But as system price declines, RAM
tends to be more limited, which forces the Consumer to make decisions about what to cache and
what not to – especially as jobs become complicated and the quantity of Occurrences increases.

Imagine, for instance, a print run that includes two Occurrences. If one will be used 800 times and
the other only twice, it’s clear which one should be cached.

But the Consumer cannot make that decision unless it knows the relative importance of the
Occurrences. Producers therefore play an important role in supporting productive printing: only the
Producer knows how often an Occurrence will be used in a given print run, and if the Producer
wishes to support optimized printing, it should feed that information to the Consumer via the
Weight attribute in the OCCURRENCE element.

In the absence of Weight, a Consumer can still base a caching strategy on such factors as scope
or least recently used.

5.14.7 What to cache and for how long

The Consumer is responsible for its caching technology and caching strategy; there is no
requirement in this specification that the Consumer provide any particular caching functionality.
However, the major goal of the PPML initiative is to improve efficiency of reuse, so Consumers that
substantially improve throughput are likely to be much more successful.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 49

It’s also important to understand that there is no requirement to cache at any particular stage of the
RIPping process. The communication between Producer and Consumer on this subject is limited to
the Producer providing two types of information: Weight hints and Scope declarations.

Note that even if an Occurrence goes out of scope, the Consumer is not required to purge it (nor
take any other action). In fact the Producer has no certain knowledge of the Occurrence’s status.
Even the scope declaration is just a “hint” that the Consumer may or may not use.

5.14.8 Strategies for Processing of Occurrences; effect of TICKET_REF

Every time an Occurrence is referenced, the resulting object must conform to the SOURCE and
VIEWs specified in the OCCURRENCE element. This requirement is central to PPML’s goal of
interoperability.

However, as noted above, this specification does not mandate how and when the Consumer must
process the Occurrence.

• A Consumer may choose to pre-RIP the Occurrence at the point of definition.

• Another Consumer may choose to defer the processing until the point of OCCURRENCE_REF.

• A third Consumer may choose to perform part of the processing at definition time and defer
part until the point of reference.

Performance (speed) and expected visual results will affect these decisions.

Note that job ticket data, specified within or outside the PPML stream (see section 4.8), may
influence how some Consumers ultimately render the Occurrence. All job ticket settings are
considered “hints” to the PPML Consumer. This includes any TICKET_REFs within the Occurrence
definition.

A Consumer may take the hints at face value and fully process the Occurrence at time of definition,
using the ticket information available at that time. Another Consumer may defer processing until the
Occurrence is referenced, using ticket data available at that time. Any other strategy is acceptable
as well – for example, pre-processing at time of definition and re-processing at time of reference.

When the Occurrence is referenced, the Ticket State at point of OCCURRENCE_REF should match
one of the states listed in a TICKET_STATE element in the OCCURRENCE definition. If it does not,
the result is Consumer-dependent. See section 4.11 for more information.

If a PPML Producer is concerned with consistency of output across different Consumers, it should
specify all relevant job ticket parameters when the Occurrence is defined, and ensure that the same
parameters are in effect when the Occurrence is referenced. Alternatively, the Producer may specify
no parameters, or only some, and leave all other rendering decisions to the individual Consumer.

For example, given the following PPML, where the JPEG is of a brown shoe and the initial job ticket
setup has specified color output using the CMYK color model:

<DOCUMENT>

<REUSABLE_OBJECT ...>
... Src="brown_shoes.jpg"...
<OCCURRENCE Name="brown_shoes_no_scale">
...

</REUSABLE_OBJECT>

PPML Specification Version 2.1 July 31, 2002

Page 50 Copyright 2002 PODi www.podi.org

<PAGE>
<TICKET_REF ExtIDRef="DeviceGrey"/>
...
<OCCURRENCE_REF Ref="brown_shoes_no_scale"/>
...

It is implementation defined whether the OCCURRENCE_REF above prints in brown or black and
white.

Again, performance and expected results will affect such decisions, as vendors design products for
different markets. But in all cases the output must conform to the original definition in the
OCCURRENCE element.

5.14.9 Implementation note: Effects of imposition

Consumers are advised to take into account the possibility that imposition will require the
Occurrence to be imaged in more than one orientation.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 51

5.15 The <OCCURRENCE_REF> Element

5.15.1 Description

The OCCURRENCE_REF element creates a reference to an Occurrence of a Reusable Object. The
Reusable Object and Occurrence to which the OCCURRENCE_REF refers must have been defined
earlier in the dataset or globally via a named environment.

5.15.2 Model

OCCURRENCE_REF EMPTY

5.15.3 Attributes

Attribute

Required
/Optional

Type

Description

Ref Required String Name of a previously defined Occurrence for
this object.

Environment Optional String The environment in which the name of a Global
Occurrence should be interpreted. (This attribute
is required if the scope of the Occurrence is
Global; otherwise, this attribute has no
meaning.)

5.15.4 Context

OCCURRENCE_REF can occur in MARK, SHEET_MARK, VER_TRIM_MARKS,
HOR_TRIM_MARKS, VER_FOLD_MARKS and HOR_FOLD_MARKS.

PPML Specification Version 2.1 July 31, 2002

Page 52 Copyright 2002 PODi www.podi.org

5.16 Notes on REUSABLE_OBJECTs, OCCURRENCES, Scope,
and Environment

5.16.1 Implementation notes

Note that Occurrences with Scope="Global" will never go out of scope. Therefore, they will
accumulate wherever the Consumer stores its resources, e.g. its disk or a file server. This means that
any Consumer system may want to consider whether, and how, to manage the storage of Reusable
Objects and their Occurrences.

5.16.2 Protection of an Environment’s global resources

It is the Consumer’s responsibility to protect global-scoped Occurrences from being accidentally
erased by subsequent downloads. Therefore, Consumer vendors may want to require authorization
before any dataset can create or access an Environment. This is left as an implementation decision
for the Consumer.

One approach could be to use some unique identifier as part of the Environment, perhaps
including the domain name of the print job’s originator. In either case, PPML merely considers it to
be a simple text string, but accidental duplication of Environment would be unlikely. Examples:

Scope="Global" Environment="FordJob@Dclark@MyCompany.com"

Scope="Global" Environment="MyCompany/Dclark/"

5.16.3 Scope

The Occurrence’s Scope attribute defines how long the Occurrence must be available: for the
current Page, the current Document, the current Document Set, the entire PPML dataset, or
permanently (Global). For instance, in a Consumer that caches Occurrences, when the Consumer
completes the defined scope (e.g. the current Document), the Occurrence can be flushed from
cache memory.

Scoping is mostly for lifespan: when an Occurrence goes out of scope, the Consumer is permitted
to recover the resources it used. (It also has a namespace effect – for instance, “Ford logo” may
have a different meaning in a particular job than it does for most projects.) However, global scope
is somewhat different. Most uses of global scope will be for Occurrences that persist over a
considerable period of time: weeks or months, as in a continuing project, perhaps even years, such
as company logos). It is expected that in typical production work such Occurrences will be loaded
into the Consumer system before production jobs begin, and they will then be referenced
repeatedly in multiple jobs or projects.

5.16.4 Resolving Occurrence names

When a Mark contains an Occurrence Reference, the referenced Occurrence name is resolved by
searching from lowest to highest level. If the Occurrence was defined within the current Page, that
definition is used; if not, each higher level is searched: Document, Document Set, then PPML.
Global Occurrences are only searched if the Occurrence Reference has an Environment attribute. If

mailto:FordJob@Dclark@MyCompany.com

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 53

it has, only global Occurrences in that Environment are searched and Occurrences at lower scopes
are ignored. It is an error if no Occurrence is found.

5.16.5 Downloading reusable objects for caching for future use

In real world workflows, the source data for some reusable objects typically becomes available to
production workers before other objects become available. To minimize workload at deadline time,
it’s a good idea to download such objects to the Consumer for caching when they become
available, rather than waiting until all objects are available.

To do this, construct a PPML dataset that contains no Document Sets, just Reusable Object definition
elements. Set each element’s Scope attribute to Global and define a value for the
Environment string attribute.

PPML Specification Version 2.1 July 31, 2002

Page 54 Copyright 2002 PODi www.podi.org

5.17 The <SEGMENT_ARRAY> element

5.17.1 Description

The SEGMENT_ARRAY element defines a collection of reusable objects whose contents are
contained in a multi-page source file. Once the SEGMENT_ARRAY has been declared, individual
segments can be placed on a page by use of a SEGMENT_REF.

A SEGMENT_ARRAY element may identify the source data via the Src attribute, or via an
EXTERNAL_DATA or INTERNAL_DATA element, but not both.

5.17.2 Model

SEGMENT_ARRAY (VIEW?, (INTERNAL_DATA | EXTERNAL_DATA)?)

5.17.3 Attributes

Attribute

Required/
Optional

Type

Description

ClippingBox Optional Number × 4 Supplies the coordinates of the lower left and upper right
corners of the rectangle containing the desired area of the
content data, in PPML default coordinates.

Dimensions Required Number × 2 The width w and height h of a rectangle that encloses
the content data contained in this element.

Environment Required if
Scope =
"Global";
not needed
otherwise

String Specifies the environment in which a global object should
be defined. (There is no default environment.)

Format Required Keyword Indicates the format of the data (e.g., PostScript, PDF,
TIFF, etc.) Value: any format name registered with the
Internet Assigned Numbers Authority (IANA). (See
Appendix 3.)

IndexRange Required Comma-
separated list
of ranges,
e.g. 1-10
or
1-5,7,10-
12

Specifies which of the segments within the source to fully
process and cache within the Consumer. Segments which
are skipped may require some processing to locate the
start of data for subsequent segments.

The list is specified as either a single index or a range of
indices given as l-h (“low to high”). The index values
must increase monotonically.

Name Required String Name to be used when referencing SEGMENT_ARRAY
elements.

Overwrite Optional Boolean Defines what the Consumer should do if
Scope="Global" and the name already exists in the
specified environment. For each segment specified in the

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 55

Attribute

Required/
Optional

Type

Description

IndexRange, a value of “Yes” instructs the Consumer to
replace a prior definition with the same Name and index
by the newly supplied value and leaves any other segment
unchanged (any segment not in the current IndexRange is
taken from the existing definition). It is allowed that the
maximum index of the current IndexRange is greater than
the one of the existing definition. A value of “No” (the
default) instructs the Consumer to leave the prior value of
the segment.

Scope Optional Keyword Specifies the scope of this element’s use. Possible values
are Global, PPML, DocSet, Document and
Page. By default, the scope is the containing element in
which the object is defined. A higher value may be
specified with this attribute. Specifying a lower scope
level is an error.

Src Optional URI See section 5.9.3. Use of this attribute is discouraged. To
identify an external file, Producers are advised to instead
use EXTERNAL_DATA.

Checksum Optional String Hexadecimal-encoded string, provided as a hint to the
Consumer. Consumers are not required to support this
attribute.

ChecksumType Optional String Identifies the type of checksum. If this attribute is present,
the Checksum attribute must also be present.
Default=”MD5”.

Weight Optional Number A number from 1 (minimum importance) to 100
(maximum) describing, qualitatively, the relative
importance of this Segment Array. See section 5.14.6,
“Statistics about Reuse: the Weight attribute.”

5.17.4 Context

The SEGMENT_ARRAY element can occur within PPML, DOCUMENT_SET, DOCUMENT and
PAGE.

5.17.5 Implementation note: Effects of IndexRange and Overwrite

When combining IndexRange with Overwrite="Yes", it is possible that segments in the same
SEGMENT_ARRAY have different values for ClippingBox, View and Dimensions.

5.17.6 Implementation note: Effects of nested scopes

A redefinition of a SEGMENT_ARRAY on a lower scope completely hides the ones on a higher
scope. As a consequence a reference to a segment that is not in the IndexRange of the
SEGMENT_ARRAY on the lowest scope results in an empty mark and is not resolved by a possible
segment on a higher scope.

PPML Specification Version 2.1 July 31, 2002

Page 56 Copyright 2002 PODi www.podi.org

5.18 The <SEGMENT_REF> element

5.18.1 Description

The SEGMENT_REF element creates a reference to a member of a Segment Array. The
SEGMENT_ARRAY element to which this element refers must have been previously defined in a
scope containing the reference.

5.18.2 Model

SEGMENT_REF EMPTY

5.18.3 Attributes

Attribute

Required/
Optional

Type

Description

Environment Optional String Specifies the environment in which the name of the global-
scoped element is defined.

Index Optional Integer Indicates which segment is to be selected for use in this
instance. If Index refers to a segment that falls outside the
specified IndexRange (see also the Overwrite attribute in
SEGMENT_ARRAY), this Mark is empty. The default (and also
minimum) value is ”1”, which corresponds to the very first
segment of the referenced source file.

Ref Required String Specifies the name of the previously defined Segment Array to
which this element refers.

5.18.4 Context

A SEGMENT_REF can occur in MARK.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 57

5.19 Definition of PPML Extent Boxes

The extent box of a SOURCE element is its effective clipping boundary determined by its
Dimensions and ClippingBox attributes. See Section 5.8.5, Dimensions and ClippingBox for
the definition of the clipping boundary.

To apply a VIEW to an extent box, the Consumer must use the following procedure:

• Apply the transformation specified in the TRANSFORM attribute to the current extent box. This
results in a four-sided figure.

• If the VIEW has a CLIP_RECT attribute, clip the four-sided figure using the clipping rectangle.
This results in a figure that can have up to eight sides.

• Compute the bounding box of this figure: it is the new extent box.

To combine two or more extent boxes, compute the bounding box of the positioned extent boxes: it
is the new extent box.

5.19.1 Applying a VIEW to an Extent Box

This example shows how a VIEW is applied to an extent box:

The resulting extent box is shown below:

original extent box
(transformed)

CLIP_RECT

6-sided clipped area

6-sided clipped area

resulting extent box

PPML Specification Version 2.1 July 31, 2002

Page 58 Copyright 2002 PODi www.podi.org

5.19.2 Combining Extent Boxes

When two or more objects are combined in a single mark, their extent boxes are combined as
follows, then the view is applied as shown in the previous section:

The resulting extent box is shown below:

The next section contains examples of how extent boxes are used.

2nd extent box (positioned)

1st extent box (positioned)

2nd extent box (positioned)

1st extent box (positioned)

resulting extent box

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 59

5.20 Notes on Transforming, Clipping and Positioning

The following two examples show how to process a simple case of a MARK on a PPML page: a
single EPS file is transformed and clipped in various ways, and placed on a page. All the
instructions in the first example will be contained in the MARK element; the second example shows
how the same result could be accomplished using a REUSABLE_OBJECT element.

Both examples use the same original EPS file – a few words of text, which fits into a box 100 units
high and 150 units wide. The result we want to achieve is a part of this EPS file, reduced, cropped,
and rotated, as shown at the right.

 Source Desired Result

5.20.1 Self-Contained MARK Example

A self-contained MARK has this structure:

• The simplest possible MARK contains a VIEW and one OBJECT.

• An OBJECT is a VIEW of a single SOURCE.

• Each of the VIEWs can contain a TRANSFORM and a CLIP_RECT.

To process a MARK, the Consumer must first process each OBJECT inside it. And to do that, it first
processes the SOURCE in the OBJECT. Here is the resulting sequence the Consumer must follow:

• Process the SOURCE, applying its ClippingBox if any

• Take the result and transform it using the TRANSFORM from the OBJECT’s VIEW

• Take the result and clip it using the CLIP_RECT from the OBJECT’s VIEW

This produces one OBJECT that will be contained in the MARK.

Now, position the OBJECT in the MARK’s coordinate space.

Repeat the above for each OBJECT in the MARK.

Now, apply the MARK’s VIEW:

• Take the set of (one or more) OBJECTs and transform it using the TRANSFORM from the
MARK’s VIEW

• Take the result and clip it using the CLIP_RECT from the MARK’s VIEW

PPML Specification Version 2.1 July 31, 2002

Page 60 Copyright 2002 PODi www.podi.org

This produces the final piece of page content that will appear on the page. The last step will be to
position it on the page, using the MARK’s Position attribute.

The following PPML fragment achieves our desired result using a self-contained MARK:
<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

Note that the Format attribute of the SOURCE has been omitted for clarity.

A PPML Consumer processes this fragment using the steps shown on the following pages.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 61

1. Read the SOURCE element in the OBJECT

First, the Consumer finds the SOURCE element inside the MARK:

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The ClippingBox attribute crops the edges of the EPS file, as shown by the dashed line:

 Current coordinate space: the SOURCE.

The result is shown below. This is the content defined by this SOURCE element:

SOURCE’s origin

PPML Specification Version 2.1 July 31, 2002

Page 62 Copyright 2002 PODi www.podi.org

2. Completing the OBJECT: VIEW the SOURCE

Next, the Consumer applies the OBJECT’s VIEW, starting with the TRANSFORM element:

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The transformation component of this VIEW specifies a translation of (-25.98,31.7) and a rotation
of –30°.

 Current coordinate space: the OBJECT.

SOURCE origin

Offset -25.98,31.7

from OBJECT origin,

rotated -30°

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 63

Now process the OBJECT’s CLIP_RECT. This completes the VIEW, and thus completes the content
of the OBJECT:

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The CLIP_RECT (20,20 to 120,120) clips the rotated image like this:

 Current coordinate space: the OBJECT.

Note

The drawings use color to highlight the clipping area.

20,20

120,120

clipped OBJECT image

PPML Specification Version 2.1 July 31, 2002

Page 64 Copyright 2002 PODi www.podi.org

Next, determine the extent box of this OBJECT element:

 Current coordinate space: the OBJECT.

The result is shown below. This is the content that this OBJECT element defines:

OBJECT’s extent box:

95 x 74.65

OBJECT’s origin

25,20

OBJECT’s extent box:

95 x 74.65

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 65

3. Place the OBJECT in the MARK, and apply the MARK’s VIEW

A MARK can contain several OBJECTs, each with its own position. Thus, when each OBJECT is
complete, its origin can be placed anywhere within the coordinates of its enclosing MARK element.
This is done using the OBJECT element’s Position attribute.

In this example the MARK contains only one OBJECT, positioned at (-20,-20).

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

 Current coordinate space: the MARK.

-20,-20 (offset of OBJECT’s origin in the MARK)

PPML Specification Version 2.1 July 31, 2002

Page 66 Copyright 2002 PODi www.podi.org

Next, apply the MARK’s TRANSFORM: scale the OBJECT to 75% of its original size:

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

Result:

 Current coordinate space: the MARK.

Next, apply the MARK’s CLIP_RECT: in this case, it does no extra clipping.

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The MARK’s content is now complete. The content can now be positioned on the page, as
shown below.

OBJECT’s extent box in the MARK:

71.25 x 56

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 67

4. Position the MARK on the page.

The only remaining step is to process the MARK element’s Position attribute.

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

 Current coordinate space: the PAGE.

30,40

PPML Specification Version 2.1 July 31, 2002

Page 68 Copyright 2002 PODi www.podi.org

The entire MARK is now complete: the content has been marked onto the page.

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The following PostScript code could be placed before the EPS source to produce this result:

30 40 translate % MARK position
0 0 75 75 rectclip % MARK clipping
[0.75 0 0 0.75 0 0] concat % MARK transform
-20 -20 translate % OBJECT position
20.0 20.0 100.0 100.0 rectclip % OBJECT clipping
[0.866 -0.5 0.5 0.866 -25.98 31.7] concat % OBJECT transform
30.0 50.0 120.0 40.0 rectclip % SOURCE clipping
% insert content of file "ppml.eps" here

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 69

5.20.2 REUSABLE_OBJECT Example

This example renders the same MARK as the previous one, but uses a REUSABLE_OBJECT.

A REUSABLE_OBJECT has this structure:

• The simplest possible REUSABLE_OBJECT contains a VIEW, one OBJECT, and an
OCCURRENCE_LIST with one OCCURRENCE.

• Each OCCURRENCE specifies a VIEW of all the OBJECTs in this REUSABLE_OBJECT.

• A MARK can include a particular OCCURRENCE of a REUSABLE_OBJECT by including an
OCCURRENCE_REF.

• It only makes sense to use REUSABLE_OBJECT if its OCCURRENCEs are used in more than one
MARK; it is probable (but not required) that the PPML Consumer will optimize the OBJECT for
reuse.

To process a REUSABLE_OBJECT, the Consumer must first process each OBJECT inside it. And to
do that, it first processes the SOURCE in the OBJECT. It is the same sequence as is used for
OBJECTs within a MARK:

• Process the SOURCE, applying its ClippingBox if any

• Take the result and transform it using the TRANSFORM from the OBJECT’s VIEW

• Take the result and clip it using the CLIP_RECT from the OBJECT’s VIEW

This produces one OBJECT that will be contained in the REUSABLE_OBJECT.

Now, position the OBJECT in the REUSABLE_OBJECT’s coordinate space.

Repeat the above for each OBJECT in the REUSABLE_OBJECT.

Now, apply the REUSABLE_OBJECT’s VIEW:

• Take the set of (one or more) OBJECTs and transform it using the TRANSFORM from the
REUSABLE_OBJECT’s VIEW

• Take the result and clip it using the CLIP_RECT from the REUSABLE_OBJECT’s VIEW

Now, apply each OCCURRENCE’s VIEW:

• Take the result and transform it using the TRANSFORM from the OCCURRENCE’s VIEW

• Take the result and clip it using the CLIP_RECT from the OCCURRENCE’s VIEW

• Repeat the above for each OCCURRENCE in the OCCURRENCE _LIST

This process produces the final piece of page content for each OCCURRENCE. They are now ready
to be included on a page with an OCCURRENCE_REF. The last step will be to position the content
on the page, using the MARK’s Position attribute.

PPML Specification Version 2.1 July 31, 2002

Page 70 Copyright 2002 PODi www.podi.org

The following PPML fragment achieves our desired result using a REUSABLE_OBJECT:

<REUSABLE_OBJECT>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

<MARK Position="30 40">
 <OCCURRENCE_REF Ref="example" />
</MARK>

Note that the Format attribute of the SOURCE has been omitted for clarity.

A PPML Consumer processes this fragment using the following steps.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 71

1. Create the OBJECT specified in the REUSABLE_OBJECT.

Use steps 1 and 2 from the previous example to obtain the OBJECT by reading its SOURCE and
applying its VIEW.

<REUSABLE_OBJECT>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

The result is shown below. This is the content that this OBJECT element defines:

 Current coordinate space: the OBJECT

OBJECT’s extent box:

95 x 74.65

OBJECT’s origin

25,20

PPML Specification Version 2.1 July 31, 2002

Page 72 Copyright 2002 PODi www.podi.org

2. Place the OBJECT, and apply the REUSABLE_OBJECT’s and OCCURRENCE’s VIEWs.

A REUSABLE_OBJECT can contain several OBJECTs, each with its own position. Thus, when each
OBJECT is complete, its origin can be placed anywhere within the coordinates of its enclosing
REUSABLE_OBJECT element. This is done using the OBJECT element’s Position attribute.

In this example, the OBJECT is positioned at (-20,-20).

<REUSABLE_OBJECT>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

 Current coordinate space: the REUSABLE_OBJECT.

-20,-20 (offset of OBJECT’s origin in the REUSABLE_OBJECT)

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 73

Next, apply the REUSABLE_OBJECT’s VIEW: transform and clip the OBJECT as specified. In this
example, the REUSABLE_OBJECT’s VIEW is empty and no processing is required.

<REUSABLE_OBJECT>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

Next, apply the OCCURRENCE's TRANSFORM: scale the OBJECT to 75% of its current size:

<REUSABLE_OBJECT>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

PPML Specification Version 2.1 July 31, 2002

Page 74 Copyright 2002 PODi www.podi.org

OBJECT’s extent box in the OCCURRENCE:

71.25 x 56

Result:

 Current coordinate space: the OCCURRENCE.

Next, apply the OCCURRENCE’s CLIP_RECT: in this case, it does no extra clipping.

<REUSABLE_OBJECT>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

The OCCURRENCE’s content is now complete.
<REUSABLE_OBJECT>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 75

3. Position the OCCURRENCE on the PAGE.

The only remaining step is to apply the MARK element’s Position attribute to the OCCURRENCE
created in step 2:

<REUSABLE_OBJECT>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

<MARK Position="30 40">
 <OCCURRENCE_REF Ref="example" />
<MARK/>

 Current coordinate space: the PAGE.

The entire MARK is now complete: the content has been marked onto the page.

<MARK Position="30 40">
 <OCCURRENCE_REF Ref="example" />
</MARK>

30,40

PPML Specification Version 2.1 July 31, 2002

Page 76 Copyright 2002 PODi www.podi.org

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 77

Chapter 6:
Print Layout –
Page Layout and Imposition

6.1 Introduction

6.1.1 Imposition in personalized printing

In addition to its personalization features, the PPML language includes another important feature not
found in most print languages: imposition. It’s important to understand what imposition is and is not,
especially in the context of personalized documents, which are a main purpose of the PPML language.

• Imposition is the process of positioning page images on sheets of paper in the printer (or in a
digital printing press), as part of the process of producing finished documents.

• In addition to the page images, various marks can be added to the sheets, to aid in the
production process. For instance, marks can be added to show where the paper should be
folded or trimmed.

• Imposition has no effect on the content of any individual page – it only affects where the pages
are placed on a press sheet.

Note: in this document, “imposition” (lowercase) refers to the functions described above. It does not
refer to processing of the IMPOSITION element. “Imposing Consumers” are ones that process the
SHEET LAYOUT element.

Note

PPML Consumers are not required to support the SHEET_LAYOUT element, nor
the Ncopies and Collate attributes on PRINT_LAYOUT. This means a
complex production job intended for a large-format digital printing press can be
proof-printed on a simpler, small-format desktop printer. Similarly, a single-page
production printer can print the dataset’s document content stream (including
copies and collation), ignoring imposition instructions.

It also means a post-processing system can extract the document content stream
(Document Sets, Documents and Pages) from a PPML dataset, and use other
methods to assign pages to sheets, add sheet marks, etc.

Personalized printing requires imposition instructions that have never before been necessary.

In non-personalized printing, imposition is the placement of unchanging master pages onto a
reproduction master, such as a printing plate.

But in digital printing of personalized documents, every copy is unique. Therefore, in addition to the
regular imposition instructions, the language must also specify where to place each sequential copy of

PPML Specification Version 2.1 July 31, 2002

Page 78 Copyright 2002 PODi www.podi.org

the document (each Instance Document). Sometimes the next document starts on a separate sheet, some-
times it starts in the next row of the same sheet, sometimes it starts in the next column of the same sheet.

6.1.2 Overview of PPML elements for laying out the print job

This section provides a conceptual overview of how PPML pages are printed onto sheets as part of
the overall production process. Each element is defined in its own section below.

Top level elements

<PRINT_LAYOUT> includes:
 <PAGE_LAYOUT> defines page size and cropping.
 <SHEET_LAYOUT> defines the size of the sheet, the sheet marks (e.g. crop marks),
 and all imposition instructions

Sheet layout elements

Sheet layout elements include imposition elements plus certain production marks that are associated
with each sheet.

<SHEET_LAYOUT> includes:
 <SHEET_MARK>
 Imposition elements

Imposition elements

Imposition elements contain signature definitions and REPEAT elements:

 <IMPOSITION> includes:
 <SIGNATURE> or
 <REPEAT>

Impositions can have a Name and can be referenced with IMPOSITION_REF.

Signature elements

Finally, the SIGNATURE element (and its surrounding REPEATs, if any) define what is to be
printed on a single sheet:

<SIGNATURE>
 <CELL> defines the page order of each available position in the imposition layout:
 which location should receive the first Page, the second Page, and so on,
 and whether the Page should be rotated.
 Gutter locations & sizes (spaces between cells)
 Fold marks
 Trim Marks

6.1.3 Production Marks

“Production marks” are marks added to the sheet to assist in production; they are not part of
document content. The Consumer may add production marks to a sheet after all the pages have

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 79

been imaged, or before the pages, or both. Production marks and PAGEs are imaged in the order
they appear.

The following sections define each of the elements presented in this overview.

PPML Specification Version 2.1 July 31, 2002

Page 80 Copyright 2002 PODi www.podi.org

6.2 The <PRINT_LAYOUT> Element

6.2.1 Description

PRINT_LAYOUT is the master element that includes the page dimensions and how the Pages are
to be laid out onto sheets by the Consumer.

6.2.2 Model

PRINT_LAYOUT (PAGE_LAYOUT, SHEET_LAYOUT?)

6.2.3 Example

The following illustrates a simple setup for printing letter-size pages onto 12x18” sheets. (Lower-
level elements are omitted for this illustration.)

<PRINT_LAYOUT>
 <PAGE_LAYOUT TrimBox="0 0 612 792"/>
 <SHEET_LAYOUT HSize="1296" VSize="864">
 ...
 </SHEET_LAYOUT>
</PRINT_LAYOUT>

6.2.4 Attributes

Attribute

Required
/Optional

Type

Description

Ncopies Optional Integer How many copies to print of each sheet (for an imposing Consumer) or
each page (for a non-imposing Consumer). Default=1.

Collate Optional Keyword "Document" (default) = print the entire first copy of the document
(all sheets, all pages), then print the entire second copy of the same
document, etc.

"DocSet" = print one copy of the entire Document Set (one copy of
each document), then print the entire set again (another copy of each
document), etc.

"No" = print all copies of the first sheet (or page) of the first document,
then print all copies of the second sheet (or page) of that document, etc.

Notice the distinction between the non-imposing consumer (which sees only pages) and the
imposing consumer (which sees sheets). Both Ncopies and Collate make sense for both
environments. The non-imposing consumer will copy and collate individual pages, while an
imposing consumer will copy and collate full sheets.

Generally, uncollated output makes fewer demands on the Consumer’s memory and may thus be
the preferred mode when outputting to lower-powered products.

6.2.5 Context

PRINT_LAYOUT can occur in PPML and DOCUMENT_SET.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 81

6.3 The <PAGE_LAYOUT> Element

6.3.1 Description

The PAGE_LAYOUT element describes page cropping information when using PPML’s imposition.
This element appears similar to PAGE_DESIGN because both have a TrimBox and BleedBox
attribute. See section 4.6.6 for a discussion of the similarities and differences.

The PAGE_LAYOUT element states the rectangular dimensions of the Page. Three different
dimensions are given: the trim box, the bleed box, and the bounding box. Example:

<PAGE_LAYOUT TrimBox="0 0 612 792"
 BleedBox="-18 -18 630 810"
 BoundingBox="-72 -72 684 864"
 />

The “Trim Box”

TrimBox indicates the final page size
after trimming. The lower left corner of
the trimmed page is the origin: when
BleedBox or BoundingBox extends
outside the trimmed page, its lower left
corner will have negative coordinates,
as shown in the PAGE_LAYOUT
example above.

The “Bleed Box”

“Bleed” is the practice of intentionally allowing page content to extend a small distance beyond
TrimBox. This is done to compensate for normal imperfections in the finishing process: if the
trimming is not perfectly accurate, blank paper might be visible along the edge of the page.
Extending the page image beyond TrimBox (i.e. using bleeds) avoids this.

The PAGE_LAYOUT element’s BleedBox attribute specifies how far the image area is allowed to
extend outside the page, but the allowed amount may not always be used. For instance, at the
edge of a sheet, the entire specified bleed area is used. But within an imposed sheet (i.e. between
two adjacent pages), the bleed extends into the gutter between the pages (if there is one) as
follows:

• If there is no space (gutter) between the pages, then no bleed is needed at that edge. On that
side, the Consumer crops the content of each page at each Page’s TrimBox (which in this case
is also the line where the two pages meet). At the outside borders of the signature the bleed
would still be used.

• If there is a gutter, and it’s less than or equal to the bleed, then the bleed fills the gutter. (The
bleed from each page stops in the middle of the gutter.)

• If the gutter is wider than the bleed, the Consumer crops the page image at the BleedBox.

TrimBox:
Finished page

= 8½ x 11”

BleedBox =
9 x 11½”
(1/4” bleed all sides;
all page content is
cropped to this box)

BoundingBox =
10½ x 13”
(1” from each side of
TrimBox; an alternate
cropping limit)

 PPML page origin
(used for positioning

the page in the imposition cell) 0,0

PPML Specification Version 2.1 July 31, 2002

Page 82 Copyright 2002 PODi www.podi.org

If no BleedBox is specified, BleedBox defaults to TrimBox.

TrimBox should not extend beyond BleedBox, but if it does, TrimBox will prevail.

The “Bounding Box”

The bounding box states the farthest uncropped extent of all objects on the page. In rare
circumstances this may be useful as an alternative cropping boundary. It is expected to be used less
frequently than BleedBox but will be of value in appropriate applications.

For instance, a PPML Page could consist of a single full-page object created by a desktop
publishing application. Output from such applications typically includes production marks that fall
outside the page area: crop marks, file identification information, etc. When the PPML page
containing this object is imposed, the Producer has typically set BleedBox to a small value, so
that all the application’s production mark information is cropped out.

But when the same PPML page is proof-printed on a non-imposing printer, it may be preferable not
to crop out those marks. With BoundingBox, a Producer can indicate the farthest uncropped
extent of all objects on the page. The Consumer can honor BoundingBox instead of BleedBox,
which allows printing page proofs that show the original application-provided marks outside the
bleed area.

If BoundingBox is not specified, it defaults to BleedBox. If BleedBox extends beyond
BoundingBox, then BoundingBox is set to the intersection of the two.

6.3.2 Model

PAGE_LAYOUT EMPTY

6.3.3 Attributes

Attribute

Required
/Optional

Type

Description

TrimBox Required Number × 4 Coordinates, in 1/72”, of the trimmed size of the final
page (i.e. after finishing).

BleedBox Optional Number × 4 Coordinates, in 1/72”, of the page’s bleed area. Defaults
to TrimBox.

BoundingBox Optional Number × 4 Coordinates, in 1/72”, of the maximum area that may
need to be printed. Defaults to BleedBox.

6.3.4 Context

The PAGE_LAYOUT element appears within PRINT_LAYOUT and SHEET_LAYOUT.

6.3.5 Page orientation

All dimensions in the attributes are to be listed in “upright” orientation. For instance, a portrait
letter-size page will have TrimBox="0 0 612 792" and a landscape letter-size page will have
TrimBox="0 0 792 612". Thus, no separate Orientation attribute is needed.

Note that any Page may be rotated when it is used in IMPOSITION and/or SHEET_LAYOUT.
But the Page itself, and its content, are independent of imposition and printing.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 83

6.4 The <SHEET_LAYOUT> Element

6.4.1 Description

In general, the SHEET_LAYOUT element contains all the elements that define what goes where on
which sheet. It declares any marks that are associated with the sheet itself and what imposition
instructions to use.

6.4.2 Model

SHEET_LAYOUT (SHEET_MARK | (PAGE_LAYOUT?, (IMPOSITION | IMPOSITION_REF)))*

6.4.3 Attributes

Attribute

Required
/Optional

Type

Description

Hsize Required Number Horizontal size of the sheet in 1/72”

Vsize Required Number Vertical size of the sheet in 1/72”

GangDocuments Optional Boolean Yes means all Instance Documents in a Document Set are to
be concatenated into a single stream of pages for imposition.
No (the default) means each Instance Document must start a
new sheet. See also the PageOrder attribute of the CELL
element (section 6.9.5, “Using expressions in the PageOrder
attribute”).

6.4.4 Context

SHEET_LAYOUT occurs within PRINT_LAYOUT.

6.4.5 Usage

Note that the model allows SHEET_MARK elements to come before or after imposition, or before
and after Imposition elements. The Consumer must image the sheet in the sequence specified in
SHEET_LAYOUT.

If SHEET_LAYOUT contains no child elements, then it defines nothing but the sheet size – it
defines no imposition or sheet marks. In this case each page is centered on a sheet. If the PAGE’s
BleedBox is bigger than the sheet size, then the sheet size is used for cropping.

An optional PAGE_LAYOUT element may precede IMPOSITION or IMPOSITION_REF, in
which case it replaces the previous PAGE_LAYOUT. This allows combining several different
imposition schemes on the same sheet, including (optionally) different page sizes.

One set of page numbers applies to the whole sheet, even if it contains more than one
IMPOSITION.

PPML Specification Version 2.1 July 31, 2002

Page 84 Copyright 2002 PODi www.podi.org

6.5 The <SHEET_MARK> Element

6.5.1 Description

The SHEET_MARK element places a Reusable Object at a specified location on every sheet.
Applications of this feature are expected to include color control strips, the print shop’s logo, or job
ID information.

Note that a sheet mark may be placed anywhere on the sheet: the Producer may place sheet marks
on top of page image areas if desired.The name of the Occurrence Reference is resolved
immediately when the Sheet Mark element is encountered. That is, the OCCURRENCE content
object named in the OCCURRENCE_REF element is retrieved immediately, such that even if the
OCCURRENCE is renamed while the job is running, the appearance of the SHEET_MARK will not
be affected.

Note that this element can only exist at the PPML or Document Set level (not Document or Page)
because its enclosing SHEET_LAYOUT element can only appear at those levels. Therefore, the
Occurrence used in a Sheet Mark cannot have a scope of Document or Page.

6.5.2 Model

SHEET_MARK (OCCURRENCE_REF)

6.5.3 Attributes

Attribute

Required
/Optional

Type

Description

Position Required Number × 2 Location where the bottom left corner of the mark’s
bounding box is to be placed on the sheet.

Face Optional Keyword Whether the Sheet Mark is to appear on the top of the
sheet (Face="Up") or bottom of the sheet (Face="Dn").
Default=Up.

6.5.4 Context

SHEET_MARK occurs in SHEET_LAYOUT

6.5.5 Future considerations: variable sheet marks

Future versions may include the ability to imprint variable information in a sheet mark. Examples
might include the date and time of the press run, a text string to identify which machine printed the
sheets, a sheet number within the run or within the job, and so on.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 85

6.6 The <IMPOSITION> Element

6.6.1 Description

The IMPOSITION element creates an imposition template, which immediately becomes the active
imposition. The optional Name attribute allows saving it as a reusable template so it can be
recalled with IMPOSITION_REF.

The IMPOSITION element can have two possible content structures:

• For multi-sheet applications, IMPOSITION can contain a SIGNATURE, e.g.:

<IMPOSITION>
 <SIGNATURE> ... </SIGNATURE>
</IMPOSITION>

• For applications where the document is smaller than one sheet, the IMPOSITION element can
contain one REPEAT element (which may be nested) around one SIGNATURE element,
for instance:

<IMPOSITION>
 <REPEAT Direction="Stack">
 <REPEAT Direction="Hor">
 <REPEAT Direction="Ver">
 <SIGNATURE> ... </SIGNATURE>
 </REPEAT>
 </REPEAT>
 </REPEAT>
</IMPOSITION>

6.6.2 Model

IMPOSITION (SIGNATURE | REPEAT)

PPML Specification Version 2.1 July 31, 2002

Page 86 Copyright 2002 PODi www.podi.org

6.6.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Optional String Optional identifying string for reference in a subsequent
IMPOSITION_REF element.

Environment Required if
Scope=
"Global";
not needed
otherwise

String Specifies the environment in which the Imposition should
be defined. (There is no default environment.)

Scope Optional Keyword Specifies the scope of this Imposition template’s use.
Possible values for Scope are Global, PPML, and
DocSet. By default, the scope is the containing element
in which the imposition is defined. A higher value may
be specified in this attribute, but a lower value is an
error.

Rotation Optional Integer Rotation of the IMPOSITION content structure (the
imposed set of signatures) relative to the sheet,
counterclockwise: 0, 90, 180, 270 degrees. Default=0.

Position Optional Number × 2 Location where the bottom left corner of the rotated
IMPOSITION content structure is to be placed on the
sheet. If the Position attribute is not used, the entire
structure is centered on the sheet.

The imposition content structure is the logical structure
that contains all the cells (including any empty cells) in
the imposition scheme. It does not include any trim or
fold marks.

6.6.4 Context

IMPOSITION can occur in SHEET_LAYOUT, DOCUMENT_SET, and PPML.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 87

6.7 The <IMPOSITION_REF> Element

6.7.1 Description

The IMPOSITION_REF element recalls an imposition template that was previously defined. This
enables the convenience of creating a library of standard imposition setups and reusing them.

6.7.2 Model

IMPOSITION_REF EMPTY

6.7.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Required String Name attribute of the imposition template previously defined.

Environment Optional String The environment in which the name of a Global imposition tem-
plate should be interpreted. (This attribute is required if the scope
of the template is Global; otherwise, this attribute has no meaning.)

Rotation Optional Number Rotation of the IMPOSITION content structure, counterclockwise:
0, 90, 180, 270 degrees. Default=0.

Position Optional Number × 2 Location where the bottom left corner of the IMPOSITION content
structure is to be placed on the sheet. If the Position attribute is not
used, the entire structure is centered on the sheet.

6.7.4 Context

The IMPOSITION_REF element occurs in SHEET_LAYOUT.

6.7.5 Implementation notes

Calling for a stored imposition template by name has advantages but also has a side effect.
Producers should be conscious of this.

One advantage is that the dataset can be marginally smaller. Another is that it may be simpler for
the Producer to output a simple name than to regenerate all the imposition instructions. Perhaps
most important, though, is that if a dataset uses IMPOSITION_REF to call for a template by
name, then the latest version of that template will automatically be retrieved. This means that if a
shop has refined its template, the updates will automatically be implemented in any dataset that
uses that template.

But it also means that the dataset no longer has complete control of the imposition: by definition,
IMPOSITION_REF means “I don’t care what imposition is stored under this name – use it.”

If the Producer requires absolute control of the imposition for a job, it should explicitly define the
imposition in the dataset, using IMPOSITION and its child elements. (The dataset can still use
IMPOSITION_REF to call the imposition by name later in the dataset; the point is that the
imposition is only certain if it’s defined within the dataset that references it.)

PPML Specification Version 2.1 July 31, 2002

Page 88 Copyright 2002 PODi www.podi.org

6.8 The <SIGNATURE> Element

6.8.1 Description

A signature is a set of one or more pages from an Instance Document, printed on a single sheet
of paper. The pages are arranged in a specific sequence, and are printed on one or both sides of
the sheet.

The SIGNATURE element defines a uniform cell grid defined by Nrows and Ncols. The size of the
cells in the grid is not specified by the imposition layout, but is defined by the TrimBox attribute of
the PAGE_LAYOUT of the document that is imposed. The HOR_GUTTER and VER_GUTTER elements
define the spacing between the cells in the grid.

Note that every cell has the same size. Specifically, the Rotation attribute of the CELL is not used
to determine the size of a cell.

Once this grid is defined, the BleedBox in the PAGE_LAYOUT defines the clipping rectangle for
each cell depending on the gutters and the relative position in the grid.

The Rotation and Position in the IMPOSITION element determine how and where this grid is
positioned.

6.8.2 Model

SIGNATURE (CELL+, HOR_TRIM_MARKS?, VER_TRIM_MARKS?,
HOR_GUTTER*, VER_GUTTER*, HOR_FOLD_MARKS*, VER_FOLD_MARKS*)

6.8.3 Attributes

Attribute

Required
/Optional

Type

Description

Nrows Required Integer The number of rows in this signature.

Ncols Required Integer The number of columns in this signature.

PageCount Optional Integer The number of different pages consumed by this signature.
(See section 6.8.5 below.) Default is the number of CELL
elements in this signature.

6.8.4 Context

The SIGNATURE element can occur in IMPOSITION and REPEAT.

6.8.5 PageCount applications

PageCount specifically states how many different pages the Producer has assigned to this
Signature. Typically this equals the number of CELL elements, but that is not required.

For instance, in an eight-page Signature the Producer may choose to assign only four or six pages
to the signature, and that’s the number that would be assigned to PageCount. As another example,
a Producer may want to assign the same page to multiple locations in the same signature – for

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 89

instance it may duplicate the second page on the signature, for some reason. In that case when the
Producer calculates PageCount, it would ignore those duplicates, counting only how many different
pages are assigned to the Signature.

PPML Specification Version 2.1 July 31, 2002

Page 90 Copyright 2002 PODi www.podi.org

6.9 The <CELL> Element

6.9.1 Description

The CELL element assigns Pages to specific locations on a Signature. For each Page, it specifies
the row and column position within the signature, whether the Page is to be printed on the face-up
or face-down side of the sheet, and whether the page content is to be rotated in the cell.

One CELL element may be used for each page position on either side of the signature. No CELL
element has to be specified for positions that are empty.

The TrimBox attribute of the PAGE_LAYOUT used to instantiate the IMPOSITION template
determines the actual size of every Cell within the Signature.

The Rotation attribute of the CELL determines how the page content is placed inside the Cell.
It does not affect its size or bleed area. E.g. if the Rotation is 90, the page content is rotated 90
degrees counterclockwise around the center of the cell.

No trim marks will be generated for missing cells.

6.9.2 Model

CELL EMPTY

6.9.3 Attributes

Attribute

Required
/Optional

Type

Description

Row Required Integer Row number of the cell being defined. Top row=1.

Col Required Integer Column number of the cell being defined. Left column=1.

Face Optional Keyword Whether the Page is to appear on the top of the sheet
(Face="Up") or bottom of the sheet (Face="Dn").
Default=Up.

PageOrder Required String Defines the sequence number of the Page to be placed in
this cell. Can be an integer or an expression. See
description and example in paragraphs 6.9.5 and 6.9.6
below.

Rotation Optional Integer Rotation of the Page, counterclockwise: 0, 90, 180, 270.
Default=0.

6.9.4 Context

The CELL element occurs in SIGNATURE.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 91

6.9.5 Using expressions in the PageOrder attribute

Expressions can use the operators +, – , *, /, and parentheses, operating on integers and two
variables: s for sheet number (starting at 1) and n for number of pages to be imposed. Expressions
are evaluated with normal operator precedence. Multiplication must be expressed by explicitly
including the * operator – that is, use “2*s”, not “2s”. Remainders are discarded.

For print applications where page count varies from Instance Document to Instance Document,
PPML imposition templates can automatically assign pages to the correct Signature and Cell
position. To use this feature, the Producer should specify the PageOrder attribute using
expressions based on n.

The variable n depends on p, the total number of pages that need to be imposed.
This number p on its turn depends on the value of the GangDocuments attribute of
SHEET_LAYOUT:

• GangDocuments="No" means each Instance Document must start on a new Sheet. In this
case, p refers to the number of pages in the current Instance Document, and the Consumer will
evaluate the PageOrder expression separately for each Instance Document.

• GangDocuments="Yes" means all Instance Documents are to be concatenated into a single
stream of pages for imposition. In this case, p refers to the total page count (the sum of page
counts for all documents in the Document Set) and PageOrder refers to a page’s position in
the concatenated stream of pages, not its position within its parent Document.

In both cases, n is derived from p according to the following rule: let c be the sum of all the
PageCount attributes of all the SIGNATURE elements in the SHEET_LAYOUT, then n is p rounded
up to the nearest multiple of c. The number of signatures generated will be n/c.

Any cell that has a resulting PageOrder attribute greater than p or less than 1 is left blank. For
instance, if c equals 4, and an Instance Document contains 7 pages, then n for that document is 8,
and the last cell will have no content.

PPML Specification Version 2.1 July 31, 2002

Page 92 Copyright 2002 PODi www.podi.org

6.9.6 Examples

This example shows an eight-page job being assigned to the cells of two four-page signatures.

The cell assignments shown in the above diagram for the eight pages are as follows. Pages that get
assigned to the second signature are shown center-aligned so they’re easy to recognize; notice that
within each signature, the page sequence (as shown in the illustrations) is Down Up Up Down.

Page # Signature Row Column Face

1 1 1 1 Down

2 1 1 1 Up

3 2 1 1 Down

4 2 1 1 Up

5 2 1 2 Up

6 2 1 2 Down

7 1 1 2 Up

8 1 1 2 Down

This two-signature imposition can be described in a more general form, so that it handles any
number of pages, and will automatically generate additional signatures as needed to
accommodate those pages. This is done by using one 4-cell SIGNATURE element, with each
PageOrder attribute being an expression ƒ of s, the sheet number in the above table. The
general form will be as follows. (Note: “ƒn(s)” is not part of the PPML code – it will be explained
below.)

<IMPOSITION Name="2 x 2-UP Bundled">
 <SIGNATURE Nrows="1", Ncols="2">
 <CELL Row="1" Col="1" PageOrder= ƒ1(s) Face="Up" Rotate="0"/>
 <CELL Row="1" Col="1" PageOrder= ƒ2(s) Face="Dn" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder= ƒ3(s) Face="Up" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder= ƒ4(s) Face="Dn" Rotate="0"/>
 </SIGNATURE>
</IMPOSITION>

Each of the expressions ƒ1(s) … ƒ4(s) is of the form ƒn(s)=a*s −b.

The following illustrates how to determine ƒ2(s), the expression for the second CELL element.

We find the values of a and b by rewriting the expression “a*s −b” for the two entries in the above
table that have Row=1, Col=1 and Face=Down (the first and third entry from the table). We know
the result must be the page number shown in the first column of the table:

After folding: Sheet 1 Sheet 2

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 93

1 = a*1 – b (first entry from table)
3 = a*2 – b (third entry from table)

Resolving this for a and b gives a=2 and b=1. So the second CELL element becomes:
<CELL Row="1" Col="1" PageOrder="2*s-1" Face="Dn" Rotate="0"/>

Doing this for all four cells, the final code is:
<IMPOSITION Name="2 x 2-UP Bundled">
 <SIGNATURE Nrows="1", Ncols="2">
 <CELL Row="1" Col="1" PageOrder="2*s" Face="Up" Rotate="0"/>
 <CELL Row="1" Col="1" PageOrder="2*s-1" Face="Dn" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder="9-2*s" Face="Up" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder="10-2*s" Face="Dn" Rotate="0"/>
 </SIGNATURE>

</IMPOSITION>

The true power of using expressions in the PageOrder attribute is shown by generalizing the
above for any n-page document, n being a multiple of 4:
<IMPOSITION Name="2 x 2-UP Bundled">
 <SIGNATURE Nrows="1", Ncols="2">
 <CELL Row="1" Col="1" PageOrder="2*s" Face="Up" Rotate="0"/>
 <CELL Row="1" Col="1" PageOrder="2*s-1" Face="Dn" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder="n+1-2*s" Face="Up" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder="n+2-2*s" Face="Dn" Rotate="0"/>
 </SIGNATURE>
</IMPOSITION>

If we instead want to fold each sheet first, then gather them together, the page assignment scheme
would follow the same generic sequence but it would allocate pages 1-4 to the first signature, and
5-8 to the second signature, as follows:

Page # Signature Row Column Face

1 1 1 1 Down

2 1 1 1 Up

3 1 1 2 Up

4 1 1 2 Down

5 2 1 1 Down

6 2 1 1 Up

7 2 1 2 Up

8 2 1 2 Down

The resulting imposition is:
<IMPOSITION Name="2 x 2-UP">
 <SIGNATURE Nrows="1", Ncols="2">
 <CELL Row="1" Col="1" PageOrder="4*s-2" Face="Up" Rotate="0"/>
 <CELL Row="1" Col="1" PageOrder="4*s-3" Face="Dn" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder="4*s-1" Face="Up" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder="4*s-0" Face="Dn" Rotate="0"/>
 </SIGNATURE>
</IMPOSITION>

PPML Specification Version 2.1 July 31, 2002

Page 94 Copyright 2002 PODi www.podi.org

Notice that in this second example, every sheet is independent from the previous one, which is
reflected by the PageOrder expressions being independent of n.

6.9.7 Cell Rotation Example

This example shows the effect of the Rotation attribute in a CELL. Note that some attributes have
been omitted for clarity.

<SHEET_LAYOUT>
 <IMPOSITION>
 <SIGNATURE Nrows="2" Ncols="3">
 <CELL Row="1" Col="1" PageOrder="3*s" Rotation="0" />
 <CELL Row="2" Col="2" PageOrder="3*s+1" Rotation="270" />
 <CELL Row="1" Col="3" PageOrder="3*s+2" Rotation="180" />
 </SIGNATURE>
 </IMPOSITION>
</SHEET_LAYOUT>

The input document
contains these three pages :

The active PAGE_LAYOUT
is as follows:

Executing the imposition
gives the following result:

Note that the trim and bleed boxes are shown in this drawing. They will not be visible in the actual
PPML output.

Bleed Box

Trim Box

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 95

6.10 The <HOR_TRIM_MARKS> Element

6.10.1 Description

Trim Marks are Reusable Object
Occurrences that can be
automatically placed by the
Consumer on each sheet, at the
corners of the final pages, on
both sides of the sheet (front and
back), using the
HOR_TRIM_MARKS and
VER_TRIM_MARKS elements.

Each mark is
centered on one
boundary of the
TrimBox. The
attribute
MarkDist
specifies the mark’s
distance from the
corner of the page.

The mark is printed
without rotation or
mirroring – for
instance the
vertical trim mark
at the top of the
page will be
identical, relative
to the sheet, to the
mark at the bottom of the page.

If a signature has pages that touch, or nearly touch, as
shown at right, some trim marks would fall onto the
TrimBox of their neighboring pages. A trim mark is
suppressed if any part of its bounding box falls closer than
MarkDist to a neighboring trim box. An optional attribute
AllowOnPage="Yes" (default = "No") can overrule this
suppression.

Vertical
Trim Mark

Horizontal
Trim Mark

MarkDist

Any trim mark
is suppressed
if it would fall
on or inside
another page’s
trim box

Mark
Dist

Mark
Dist

Extent boxes
for the Trim Mark’s
OCCURRENCE
object

CELL
CORNER

• Mark is to be centered
on the page edge.

• Closest edge of the
OCCURRENCE
is positioned MarkDist
away from the cell corner.

PPML Specification Version 2.1 July 31, 2002

Page 96 Copyright 2002 PODi www.podi.org

The OCCURRENCE_REF may only refer to a reusable object with a scope at least as high as the
scope of the IMPOSITION element enclosing this mark. It is an error to refer to a mark which is
in scope, but which has a scope lower than that of the enclosing IMPOSITION element.

6.10.2 Model

HOR_TRIM_MARKS (OCCURRENCE_REF)

6.10.3 Attributes

Attribute

Required
/Optional

Type

Description

MarkDist Optional Number Distance of the mark away from the page, in 1/72”

AllowOnPage Optional Boolean Default= “No”. If Yes, Trim Marks will not be suppressed
if they fall on or inside another page’s trim box.

6.10.4 Context

HOR_TRIM_MARKS can occur in SIGNATURE.

6.10.5 Example

The following example shows how Trim Marks would be coded using two Reusable Object
Occurrences named VerTrim and HorTrim. Each is to be positioned six points from the corner of its
page.

Note that the Trim Marks elements are unaffected by how many cells are in the signature; they
simply declare whether or not the signature has trim marks.

<IMPOSITION>
 <SIGNATURE Nrows="1" Ncols="2">
 <CELL .../>
 <CELL .../>
 <HOR_TRIM_MARKS MarkDist="6">
 <OCCURRENCE_REF Ref="HorTrim">
 </HOR_TRIM_MARKS>
 <VER_TRIM_MARKS MarkDist="6">
 <OCCURRENCE_REF Ref="VerTrim">
 </HOR_TRIM_MARKS>
 </SIGNATURE>
</IMPOSITION>

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 97

6.11 The <VER_TRIM_MARKS> Element

6.11.1 Description

The VER_TRIM_MARKS element is the vertical equivalent to HOR_TRIM_MARKS. See
HOR_TRIM_MARKS (section 6.10) for description, illustration, and example.

The OCCURRENCE_REF may only refer to a reusable object with a scope at least as high as the
scope of the IMPOSITION element enclosing this mark. It is an error to refer to a mark which is
in scope, but which has a scope lower than that of the enclosing IMPOSITION element.

6.11.2 Model

VER_TRIM_MARKS (OCCURRENCE_REF)

6.11.3 Attributes

Attribute

Required
/Optional

Type

Description

MarkDist Optional Number Distance of the mark away from the page, in 1/72”

AllowOnPage Optional Boolean Default= "No". If Yes, Trim Marks will not be suppressed
if they fall on or inside another page’s trim box.

6.11.4 Context

VER_TRIM_MARKS can occur in SIGNATURE.

PPML Specification Version 2.1 July 31, 2002

Page 98 Copyright 2002 PODi www.podi.org

6.12 The <HOR_GUTTER> Element

6.12.1 Description

The horizontal gutter is a horizontal strip of space between two rows of cells in a signature.

The BetweenRows attribute specifies the set of rows between which this gutter should be inserted.
For instance, the following code shows a signature with NRows="3" and gutters between all
rows:

<IMPOSITION>
 <SIGNATURE Nrows="3" Ncols="2">
 <CELL Row="1" Col="1" PageOrder="3" Face="Up" Rotate="180"/>
 ...
 <CELL Row="2" Col="2" PageOrder="8" Face="Dn" Rotate="0"/>
 <HOR_GUTTER BetweenRows="1 3" Distance="18"/>
 </SIGNATURE>
</IMPOSITION>

It is also possible to specify a different HOR_GUTTER element for each space between rows:

<IMPOSITION>
 <SIGNATURE Nrows="2" Ncols="2">
 <CELL Row="1" Col="1" PageOrder="3" Face="Up" Rotate="180"/>
 ...
 <CELL Row="2" Col="2" PageOrder="8" Face="Dn" Rotate="0"/>
 <HOR_GUTTER BetweenRows="1 2" Distance="36"/>
 <HOR_GUTTER BetweenRows="2 3" Distance="18"/>
 </SIGNATURE>
</IMPOSITION>

Each HOR_GUTTER element affects only the rows identified in BetweenRows – previous gutter
settings for other gutters are unaffected. For instance, this code for an 8-row signature defines
uniform spacing for all rows, then changes the value for the middle gutter to 1”:

 <SIGNATURE Nrows="8" Ncols="1">
 ...
 <HOR_GUTTER BetweenRows="1 8" Distance="18"/>
 <HOR_GUTTER BetweenRows="4 5" Distance="72"/>
 </SIGNATURE>

6.12.2 Model

HOR_GUTTER EMPTY

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 99

6.12.3 Attributes

Attribute

Required
/Optional

Type

Description

Distance Required Number Size (height) of the gutter, in 1/72”

BetweenRows Required Integer ×2 Identifies the set of rows between which this Distance
applies. See examples. Top row = 1.

6.12.4 Context

HOR_GUTTER occurs in SIGNATURE.

PPML Specification Version 2.1 July 31, 2002

Page 100 Copyright 2002 PODi www.podi.org

6.13 The <VER_GUTTER> Element

6.13.1 Description

The VER_GUTTER element is identical to HOR_GUTTER except that it defines a vertical strip of
space between two columns, not rows, of cells in a signature. See the description of
HOR_GUTTER, section 6.12.1, for examples and explanation of attributes.

6.13.2 Model

VER_GUTTER EMPTY

6.13.3 Attributes

Attribute

Required
/Optional

Type

Description

Distance Required Number Size (width) of the gutter, in 1/72”

BetweenCols Required Integer × 2 Identifies the set of columns between which this Distance
applies. See examples. Columns are numbered from left to
right.

6.13.4 Context

VER_GUTTER occurs in SIGNATURE.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 101

6.14 The <HOR_FOLD_MARKS> Element

6.14.1 Description

The HOR_FOLD_MARKS element specifies a pair of horizontal fold marks between two specified
rows of a Signature – an Occurrence of a Reusable Object that will print outside the left and right
edges of the Signature.

If fold marks are defined between two cells, the trim marks on the two corners of each cell closest to
the fold marks are suppressed. Fold marks are also suppressed if any part of its bounding box falls
closer than MarkDist from the trim box of a neighboring cell.

The name of the Reusable Object Occurrence is resolved immediately when this element is
encountered. The OCCURRENCE_REF may only refer to a reusable object with a scope at least as
high as the scope of the IMPOSITION element enclosing this mark. It is an error to refer to a
mark which is in scope, but which has a scope lower than that of the enclosing IMPOSITION
element.

6.14.2 Model

HOR_FOLD_MARKS (OCCURRENCE_REF)

6.14.3 Attributes

Attribute

Required
/Optional

Type

Description

BetweenRows Required Integer × 2 Rows between which the fold line exists

MarkDist Optional Number Distance, in 1/72”, between the outermost page of the
signature and the start of the Reusable Object. (Positive
value = away from the signature.)

6.14.4 Context

HOR_FOLD_MARKS occurs in SIGNATURE.

6.14.5 Example

<HOR_FOLD_MARKS BetweenRows="1 2" MarkDist="6">
 <OCCURRENCE_REF Ref="HDashedLine"/>
</HOR_FOLD_MARKS>

PPML Specification Version 2.1 July 31, 2002

Page 102 Copyright 2002 PODi www.podi.org

6.15 The <VER_FOLD_MARKS> Element

6.15.1 Description

The VER_FOLD_MARKS element specifies a pair of vertical fold marks between two specified
columns of a Signature – an Occurrence of a Reusable Object that will print outside the top and
bottom edges of the Signature.

The mark will be centered on the fold line, at a distance specified by the MarkDist attribute.

If fold marks are defined between two cells, the trim marks on the two corners of each cell closest to
the fold marks are suppressed. Fold marks are also suppressed if any part of its bounding box falls
closer than MarkDist from the trim box of a neighboring cell.

The name of the Reusable Object Occurrence is resolved immediately when this element is
encountered. The OCCURRENCE_REF may only refer to a reusable object with a scope at least as
high as the scope of the IMPOSITION element enclosing this mark. It is an error to refer to a
mark which is in scope, but which has a scope lower than that of the enclosing IMPOSITION
element.

6.15.2 Model

VER_FOLD_MARKS (OCCURRENCE_REF)

6.15.3 Attributes

Attribute

Required
/Optional

Type

Description

BetweenCols Required Integer × 2 Columns between which the fold line exists

MarkDist Optional Number Distance, in 1/72”, between the outermost page of the
signature and the start of the Reusable Object.
(Positive value = away from the signature.)

6.15.4 Context

VER_FOLD_MARKS occurs in SIGNATURE.

6.15.5 Example

<VER_FOLD_MARKS BetweenCols="1 2" MarkDist="6">
 <OCCURRENCE_REF Ref="VFoldMark"/>
</VER_FOLD_MARKS>

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 103

6.16 The <REPEAT> Element

6.16.1 Description

An imposition template allows printing multiple pages on a signature, from one Instance Document.
In contrast, the REPEAT element allows printing signatures from multiple documents on a single
sheet. It also controls the distribution of different Instance Documents throughout the print run.

Three attributes control the effect of each REPEAT element: Direction, Action, and Count. The
elements can be nested, with different values in each element. When REPEAT elements are
nested, they are executed from innermost to outermost. For instance, the following code could be
used in creating a sheet of five identical columns of eight different business cards (see illustration).
(Inner elements have been omitted for this illustration.)

<REPEAT Direction="Ver" Action="Increment" Count="8">
 <REPEAT Direction="Hor" Action="Duplicate" Count="5">
 <SIGNATURE...>.... </SIGNATURE>
 </REPEAT>
</REPEAT>

Printing pre-sorted stacks: If the attribute values are Direction="Stack"
Action="Increment", REPEAT puts the next Signature on the next sheet. That is, the
signatures will repeat through the stack of sheets, producing a stack of pre-sorted documents.

In such applications, a Consumer may wish to print the last sheet first, so it ends up at the bottom of
the stack. To support such applications, the optional attribute Order="Descending" can be
used.

Nested REPEATs using Action="Increment": When multiple nested REPEATs have
Action="Increment", an additional counter d (document counter) is applied. In every step of a
REPEAT with action=”Increment”, d is incremented by 1, while s remains the overall sheet
counter. For instance, in the following example the inner REPEAT has Direction="Ver"
Count="3" so the Consumer will first put three signatures in a column. The outer REPEAT has

2: The second REPEAT does the same on
each row, with a different card:
<REPEAT Direction="Ver"

Action="Increment"
Count="8">

1: The inner REPEAT prints the first card
in the top row of each column:
<REPEAT Direction="Hor"

Action="Duplicate"
Count="5">

PPML Specification Version 2.1 July 31, 2002

Page 104 Copyright 2002 PODi www.podi.org

Direction="Hor" Count="4" so the whole column will be repeated four times, incrementing
the counter d continuously:

 <REPEAT Action="Increment" Direction="Hor" Count="4">
 <REPEAT Action="Increment" Direction="Ver" Count="3">
 <SIGNATURE....>
 </REPEAT>
 </REPEAT>

These are the values of d for the resulting sheet:
 1 4 7 10
 2 5 8 11
 3 6 9 12

If the signature has one cell, with PageOrder="s", then one should impose on the first sheet the
first page of document 1, below it the first page of document 2 and so on.

When the counting of documents is incremented in the stack direction the counter s starts over from
1. If different documents start on the same sheet and they have different number of pages, then the
next set of documents starts only after the longest document ends. For example:

<REPEAT Action="Increment" Direction="Hor" Count="2">
 <SIGNATURE Nrows="1" Ncols="1">
 <CELL Row="1" Col="1" PageOrder="s"/>
 </SIGNATURE>
</REPEAT>

If document 1 has 1 page and document 2 has 2 pages then this is the page distribution:

Page 1: document 1 page 1, document 2 page 1 (S=1)
Page 2: , document 2 page 2 (S=2)
Page 3: document 3 page 1, document 4 page 1 (S=1)

Notice also that when the count of documents imposed reaches the total count in the imposition
template, the consumer keeps imposing the following documents, as if a global imaginary REPEAT
with count “infinity” encompasses all other REPEATs. In other words, let N be the number of
documents that a REPEAT and all its nested REPEATS consume. This is equal to the product of
all Count attributes of the REPEAT (and all its nested ones), that have an attribute
Action=increment. When all the sheets for these N documents are generated, the whole
process starts again for the next N documents.

In the last example the imposition template imposes two documents (one REPEAT element with
count=”2”). In such a case the Consumer imposes the first two documents and then imposes the
next two documents and so on until all documents are imposed.

If there is more than one IMPOSITION element in SHEET_LAYOUT, the counter d increments
independently for each IMPOSITION.

Spacing of Signatures – the attributes Spacing and SpacingMethod: By default,
signatures are repeated with no space between them: the TrimBox of the next Instance Document
touches the TrimBox of the previous one. Optionally, the Spacing attribute can specify a distance
between the documents.

Spacing can have two different
meanings, depending on the value of
another attribute, SpacingMethod,

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 105

which has values Gap or Offset. By default, Spacing specifies the gap between the
signatures, as shown in the illustration. If SpacingMethod= "Offset" then Spacing is the
distance from the start of one signature to the start of the next.

Multiple multi-page Instance Documents per sheet: Note that REPEAT repeats a
signature, which is defined as “a set of one or more pages from an Instance Document, printed on
a single sheet of paper.” The business card example above shows the trivial case of a one-page
Signature, where each cell equals an entire Instance Document.

It is also possible to repeat a multi-page (multi-cell) Signature on a single sheet. For instance, a
personalized folded card, such as an invitation or a greeting card, could be repeated, placing two
Instance Documents on each sheet using the following code:

<REPEAT Direction="Ver" Count="2" Action="Increment">
 <SIGNATURE Nrows="2" Ncols="1">
 <CELL Row="1" Col="1" PageOrder="4*s-0" Face="Up" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder="4*s-3" Face="Up" Rotate="0"/>
 <CELL Row="1" Col="1" PageOrder="4*s-2" Face="Dn" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder="4*s-1" Face="Dn" Rotate="0"/>
 </SIGNATURE>
</REPEAT>

6.16.2 Model

REPEAT (REPEAT | SIGNATURE)

6.16.3 Attributes

Attribute

Required
/Optional

Type

Description

Direction Required Keyword Specifies which direction this REPEAT element is
defining. Allowable values: Ver (vertical), Hor
(horizontal), Stack (from sheet to sheet).

Action Required Keyword What to print in the next location: use the same value of
the signature counter s again, or increment it. Values:
Duplicate or Increment.

Order Optional Keyword Values: Ascending (default) or Descending.

Count Required Integer Total count of repeated instances.

Spacing Optional Number Distance, in 1/72”, between Signatures. Default=0. See
the SpacingMethod attribute for the effect of this value.

SpacingMethod Optional Keyword Values: Gap | Offset. Defines the meaning of the
Spacing value: If Gap, then Spacing is the gap
distance between signatures. If Offset, then Spacing
is the distance from the start of one signature to the start of
the next signature.

6.16.4 Context

The REPEAT element occurs in IMPOSITION and REPEAT.

PPML Specification Version 2.1 July 31, 2002

Page 106 Copyright 2002 PODi www.podi.org

www.podi.org Copyright 2002 PODi Page 107

Chapter 7:
Production Specifications

7.1 Introductory remarks

Most of the preceding PPML elements concern the appearance of individual pages. It is often useful
to provide additional information that supports the automated production (“manufacturing”) of
finished documents from those pages. Such information has no bearing on the content of individual
pages; rather, it concerns production on a particular machine: how the pages should be rendered
on that machine or instructions to inline finishing equipment.

As much as possible, PPML is intended to be device-independent, presuming that the machine has
the RIPs (processor resources) required by the dataset. Therefore, the PPML philosophy is to keep all
production specifications clearly separate. If it becomes necessary to retarget a job to a different
Consumer, this structure makes it easy to identify and perhaps modify all elements that are not
device-independent.

Still, practical reality in current product implementations (and expected implementations in the
foreseeable future) is that much production information is specific to individual manufacturers: even
the raw feature set varies substantially. Therefore, at present the PPML philosophy is that the
language should only specify production parameters that are true no matter what device will be
used for printing.

PPML Specification Version 2.1 July 31, 2002

Page 108 Copyright 2002 PODi www.podi.org

7.2 The <PRIVATE_INFO> Element

7.2.1 Description

Some applications on some systems need additional “private” information, e.g. device-specific
features that aren’t part of the PPML language. This element allows inclusion of any arbitrary data.

Private Info elements are private; their content is ignored by systems that don’t know the meaning of
the enclosed data.

One expected application for this feature is to include extracts from the widely used PPD (PostScript
Printer Description) file format. Such functionality may be explicitly added to PPML in future
editions; in any event, the PRIVATE_INFO element can safely be used to convey information from
PPDs or any other printer description file format (or any other allowable XML content), and it will be
ignored by any Consumer that has no use for it. Another example of a possible application would
be to provide data regarding a CMS (color management system) profile.

7.2.2 Model

PRIVATE_INFO (#PCDATA)

7.2.3 Attributes

Attribute

Required
/Optional

Type

Description

Creator Required String The creator (person, application, system etc) of this element

Identifier Optional String An arbitrary string identifying what information or feature is
provided by the content of this element.

Encoding Optional String Identifies the encoding, if any, used in the content of this
element

CharacterSet Optional String Identifies the character set used in the content of this
element.

7.2.4 Context

The PRIVATE_INFO element can occur in PPML, DOCUMENT_SET, DOCUMENT, and PAGE.

www.podi.org Copyright 2002 PODi Page 109

Chapter 8:
Resources

8.1 The <REQUIRED_RESOURCES> Element

8.1.1 Description

The optional Required Resources element can appear at any level (PPML, Document Set, Document,
Page). It specifies all the resources required (e.g. a font or a PostScript procedure set) to process
every page and every object at and below the current level (the “enclosed pages”). There is no
required use for this element, but it exists for two purposes:

1. Pre-flight checks: so that a Consumer can ensure that all resources required for a print run
are available before the processing and printing starts.

2. Subsets: To facilitate extraction of self-sufficient subsets of the larger PPML dataset that include
all the resources required to print the subset successfully.

8.1.2 Model

REQUIRED_RESOURCES (FONT*,
EXTERNAL_DATA*,
PROCESSOR*,
SUPPLIED_RESOURCE_REF*)

8.1.3 Context

The REQUIRED_RESOURCES element can occur at any level: DOCUMENT_SET, DOCUMENT,
PAGE, or the entire PPML element.

8.1.4 Attributes

None.

8.1.5 Application notes

A PPML Producer can choose the level (or levels) at which it will place the Required Resources
element, based on the functionality desired for the target application.

Consumers should note that there may be an interaction between SUPPLIED_RESOURCE and
REQUIRED_RESOURCE which presents an opportunity for optimization. For instance, the input
stream might name an EXTERNAL_DATA Required Resource that’s previously been supplied. In a
simplest implementation, the Consumer can simply concatenate the external file within the SOURCE
element whenever it’s needed. In contrast, a more sophisticated Consumer may choose to add
code to process the Resource in a way that makes it persistent, and then insert code that loads it
later, when needed.

PPML Specification Version 2.1 July 31, 2002

Page 110 Copyright 2002 PODi www.podi.org

8.2 The Element

8.2.1 Description

The FONT element identifies a font resource required for processing the pages enclosed in the
current level.

8.2.2 Model

FONT EMPTY

8.2.3 Attributes

Attribute

Required
/Optional

Type

Description

FontName Required String Name of the font as referenced by the content of the
SOURCE elements in which it is used.

Format Required String Data format of the font. Value: any format name registered
with the Internet Assigned Numbers Authority (IANA).

8.2.4 Context

FONT occurs in REQUIRED_RESOURCES.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 111

8.3 The <PROCESSOR> Element

8.3.1 Description

The PROCESSOR element names a file format interpreting resource, e.g. a RIP or similar
interpreter, required for processing the pages enclosed in the current level.

8.3.2 Model

PROCESSOR EMPTY

8.3.3 Attributes

Attribute

Required
/Optional

Type

Description

Format Required String Name of the language or file format. Value: any format
name registered with the Internet Assigned Numbers
Authority (IANA).

Revision Optional String Any identifying string that will be useful to a Consumer in
identifying whether its available processor resources are
appropriate for the enclosed data.

8.3.4 Context

PROCESSOR occurs in REQUIRED_RESOURCES.

PPML Specification Version 2.1 July 31, 2002

Page 112 Copyright 2002 PODi www.podi.org

8.4 The <SUPPLIED_RESOURCES> Element

8.4.1 Description

SUPPLIED_RESOURCES is an umbrella element containing one or more child
SUPPLIED_RESOURCE elements.

8.4.2 Model

SUPPLIED_RESOURCES (SUPPLIED_RESOURCE+)

8.4.3 Attributes

None.

8.4.4 Context

SUPPLIED_RESOURCES occurs within PPML, DOCUMENT, DOCUMENT_SET, and PAGE.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 113

8.5 The <SUPPLIED_RESOURCE> Element

Note
The Src attribute is deprecated in favor of the model used
elsewhere in PPML.: INTERNAL_DATA | EXTERNAL_DATA

8.5.1 Description

The Supplied Resource is a definition of a reusable resource such as a font, PostScript ProcSet, and
other reusable resources for later use. To be used, the Supplied Resource must be referenced by a
SUPPLIED_RESOURCE_REF in a REQUIRED_RESOURCES element.

Resources are independent of each other. They may be processed in any order, but they must
appear before they are referenced.

8.5.2 Model

SUPPLIED_RESOURCE (INTERNAL_DATA | EXTERNAL_DATA)?

8.5.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Required String An identifying name for this resource for use in
SUPPLIED_RESOURCE_REF.

ResourceName Required String Name of the resource as referenced by the content of the
SOURCE elements in which it is used.

Src deprecated
in version 2.0

Optional

URI Location of the resource file. Required if the element is empty, i.e.
if no INTERNAL_DATA or EXTERNAL_DATA is specified.

Format Required String Data format of the resource. Value: any format name registered
with the Internet Assigned Numbers Authority (IANA).

Type Required Keyword The resource type: Font | ProcSet. Other types may be
defined in the future. A ProcSet is a PostScript ProcSet as defined
in the PostScript Language Reference Manual.

SubType Optional String Optional resource subtype, e.g. (Type1, TrueType etc.)

Scope Optional String Specifies how long the Consumer must ensure that the resource
will be needed: to the end of the current PPML,
DOCUMENT_SET, DOCUMENT, or PAGE element.

8.5.4 Context

The SUPPLIED_RESOURCE element can occur in SUPPLIED_RESOURCES.

PPML Specification Version 2.1 July 31, 2002

Page 114 Copyright 2002 PODi www.podi.org

8.6 The <SUPPLIED_RESOURCE_REF> Element

8.6.1 Description

This element embodies a reference to a previously named SUPPLIED_RESOURCE element. This
permits a SUPPLIED_RESOURCE element to be declared once, and referenced in multiple
REQUIRED_RESOURCES elements.

8.6.2 Model

SUPPLIED_RESOURCE_REF EMPTY

8.6.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Required String Supplies the name of a previously encountered and named
SUPPLIED_RESOURCE element.

8.6.4 Context

The SUPPLIED_RESOURCE_REF element can occur in REQUIRED_RESOURCES.

www.podi.org Copyright 2002 PODi Page 115

Chapter 9:
Future Capabilities

The following are in addition to future capabilities mentioned elsewhere in this specification.

9.1 Transparency / overprinting

In the current version of PPML each MARK defines a raster image that consists of “marked” and
“transparent” pixels. When a MARK overlaps a MARK that was previously placed on the page, its
marked pixels completely obscure the previous MARK’s pixels, and the transparent pixels leave the
previous MARK’s pixels unaffected. This specification only applies to the interaction of MARKs: it
does not preclude the content data format used for a particular MARK from using transparency to
specify the color of the marked pixels in the MARK’s raster image.

Later versions of this specification may allow the placement of a MARK to modify rather than
obscure MARKs that were previously placed on the page. Note, however, that since different
MARKs may have been generated by content data in different content data formats using different
color models, the definition of how a “partially transparent” overlying pixel would interact with an
underlying pixel is a complex process.

9.2 Color Management

Future versions of PPML may include direct support for CMS (color management system) profiles. In
the current version, color profiles can be supported via PRIVATE_INFO or EXTERNAL_DATA
elements.

9.3 PPML Consumer Profile

Differences between Consumers (e.g. which data formats they can accept, level of imposition
support, color separations available) may be documented in a standardized Consumer Profile file
format. In the current version of PPML, such information can optionally be conveyed in
PRIVATE_INFO elements.

PPML Specification Version 2.1 July 31, 2002

Page 116 Copyright 2002 PODi www.podi.org

www.podi.org Copyright 2002 PODi Page 117

Chapter 10:
Conformance Subsets

10.1 Introduction

The PPML language allows a practically limitless range of data formats. This gives the language
great flexibility for present and future applications, but also creates the possibility of valid PPML
datasets that no machine could consume. To enable greater predictability, PODi may define
subsets designed to meet the needs of various markets and applications.

Conformance to a particular subset can be declared using the CONFORMANCE element (see section
4.7). Each subset described below has one or more identifying strings for use in the Subset and
Level attributes of CONFORMANCE.

10.2 Graphic Arts subset

This subset is intended to meet the needs of typical graphic arts workflows.

 Subset string: GA

 Level string: 1 or 2

10.2.1 Levels

The relationships between PPML Producers and PPML Consumers can be categorized as informal,
semi-formal, and formal. The PPML Graphic Arts Conformance Subset is intended for informal and
semi-formal relationships. It is not intended for formal relationships. If a conforming dataset
specifies ResourcesIncluded=Yes, then the dataset is suitable for informal blind-exchange.
If a conforming dataset specifies ResourcesIncluded=No, then the dataset is suitable for semi-
formal partial-blind-exchange.

Level 1: informal relationship, “blind exchange”

An informal relationship allows “blind exchange” between Producer and Consumer. All data
needed for the job is transmitted with the job itself. There is no reliance on any previous
exchanges between Producer and Consumer.

The Producer must ensure the job conforms to the Subset and that all resources are included in the
job itself. The Consumer must ensure it can correctly process any PPML that conforms to this subset.

PPML Specification Version 2.1 July 31, 2002

Page 118 Copyright 2002 PODi www.podi.org

Level 2: semi-formal, “partial blind exchange”

A semi-formal relationship allows partial-blind-exchange between Producer and Consumer. Some
of the data needed for this job may have been sent in a previous exchange and has been kept by
the Consumer for use by future jobs.

The Producer must ensure that the PPML data conforms to this Conformance Subset, and that all
needed data is either in the job stream or already present at the Consumer. The Consumer must
ensure it can correctly process any Conformance Subset PPML.

Open exchange (formal relationship)

A formal relationship allows open exchange of data between Producer and Consumer. The
Producer knows which Consumer it is sending data to and forms the data according to what the
Consumer needs. For these relationships, no Conformance Subset is needed. However, PPML
datasets prepared for one Consumer may not print correctly if sent to another Consumer. It is up to
the Producer to guarantee that the PPML can be processed by the Consumer.

10.2.2 Overview of PPML Changes

PPML that conforms to the Graphic Arts Subset is restricted as follows:

The SOURCE element

The SOURCE element Format attribute may only have one of these values:

application/postscript
application/pdf
image/tiff
image/jpeg.

Further restrictions on these data formats (e.g. revision levels) are explained in detail below. A
conforming PPML Producer may produce any or all of these formats, and therefore conforming
PPML Consumers must support all of them.

Job ticketing

The PPML Job Ticket format10 shall specify all Production Instructions. PRINT_LAYOUT elements
contained within PPML and DOCUMENT_SET elements are allowed, but will be overridden by a
PRINT_LAYOUT element within the PPML job ticket.

PRIVATE_INFO

PRIVATE_INFO cannot alter the content or layout of objects on the page.

The ResourcesIncluded attribute

The PPML element’s attribute ResourcesIncluded promises a Consumer that all referenced
content data, fonts, and other resources are supplied with the dataset. Note that this attribute can

10 The original wording of this requirement, when first written, was “The to-be-defined PPML digital print ticket

format”.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 119

have the value Yes or No. Either value is valid for compliance with the Graphic Arts subset. A
value of Yes means the dataset is suitable for the "blind exchange" business relationship model.

10.2.3 Details of ResourcesIncluded

A PPML dataset that specifies ResourcesIncluded=Yes must conform to these rules:

1. All content data is transmitted with the dataset. For example, if the dataset is carried in MIME,
all content data is also included in that MIME stream. All references to external data
(EXTERNAL_DATA, EXTERNAL_DATA_ARRAY, SUPPLIED_RESOURCE) will refer only to data
transmitted with the job.

2. All REQUIRED_RESOURCES elements (if present) must include only
SUPPLIED_RESOURCE_REF and PROCESSOR elements. No FONT elements are allowed.

3. No element shall specify Scope=Global. This guarantees that the data carried with the dataset
will be used and not some global data from a previous dataset.

A PPML dataset that specifies ResourcesIncluded=Yes but does not conform to the above rules
is an invalid PPML dataset.

10.2.4 Content Format Details

Color Spaces

Some color data does not specify a calibrated color space to determine its color characteristics:
TIFF, JPEG, and PostScript/PDF in color spaces DeviceCMYK and DeviceRGB. All such color data
shall be assumed to be calibrated to the SWOP standard (Specifications Web Offset Publications,
available at http://www.swop.org) for four-component data, or to the sRGB standard (IEC61966-
2.1, available at http://www.srgb.com) for three-component data.

PostScript

SOURCE elements with Format=application/postscript conform to the Graphic Arts subset
if they refer to content data that obey these restrictions:

• Content data adheres to the PostScript Language Reference Manual, Third Edition (PLRM). For
example, language extensions for particular printers are not allowed.

• Content data do not rely on the execution of illegal operators as defined in "Encapsulated
PostScript File Format Specification Version 3.0", Adobe Technical Note #5002 and as
amended by Appendix G, "Operator Usage Guidelines" of the PLRM. A PPML Consumer is
free to redefine these illegal operators to consume their operands and do nothing else.

• Content data do not use any restricted operators as defined in "Encapsulated PostScript File
Format Specification Version 3.0", except as allowed in Appendix G, "Operator Usage
Guidelines" of the PLRM. A PPML Consumer is free to redefine these restricted operators to
perform only permitted uses.

• Any external resources, such as fonts, that are not included directly in the content data are
specified in the REQUIRED_RESOURCES element that pertains to this SOURCE element.

http://www.swop.org/
http://www.srgb.com/

PPML Specification Version 2.1 July 31, 2002

Page 120 Copyright 2002 PODi www.podi.org

• OPI comments for image replacement must be ignored. Any image replacement, such as that
specified by OPI comments, has already been accomplished before the PPML Consumer
receives the PPML dataset.

PDF

SOURCE elements with Format=application/pdf conform to the Graphic Arts subset if they
refer to content data that obey these restrictions:

• Content data contain only PDF operators as specified in the Portable Document Format
Reference Manual, Version 1.3.

• Any external resources, such as fonts, that are not included directly in the content data are
specified in the REQUIRED_RESOURCES element that pertains to this SOURCE element.

• No image object will contain an OPI Dictionary.

TIFF

SOURCE elements with Format=image/tiff conform to the Graphic Arts subset if they refer to
content data that obey these restrictions:

• Content data conform to TIFF Revision 6.011, except:

• Content data do not specify Compression=6, which is ill-defined and can't guarantee
successful parsing of JPEG data, and

• Content data can specify Compression=7, which is well-defined JPEG, 12 and widely used.

Note that Compression=5 (LZW compression) is supported, but requires a license from Unisys.
Conforming PPML Producers and Consumers are required to obtain such a license themselves or
use products from companies that already have a license.

JPEG

SOURCE elements with Format=image/jpeg conform to the Graphic Arts subset if they refer to
content data that obey these restrictions:

• Content data conform to Huffman-encoded Lossy JPEG (any of these Start Frame Markers: SF0,
SF1, SF2, SF5, SF6).

• Resolution is deduced from the Dimensions attribute of the element. Only one JPEG image file
is allowed per SOURCE element, so that Dimensions will be correct.

11 Available at http://partners.adobe.com/asn/developer/PDFS/TN/TIFF6.pdf
12 ftp://ftp.sgi.com/graphics/tiff/TTN2.draft.txt

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 121

Appendix A:
Acknowledgements

PPML Working Group participants – version 1.0

The PPML specification would not have been possible without the substantial efforts of the following
companies and their designated participants. In alphabetical order, they are:

Adobe Systems: John Green
Agfa: Roger Baeten and Marcus Delhoune
Barco: Dirk De Bosschere
EFI: Margaret Motamed
HP: Bob Taylor
IBM: D. R. Palmer
Indigo: Sigal Krumer and Ouri Poupko
NexPress: David Blaszyk, Tim Donahue, Wayne Minns
Pageflex: Peter Davis
Scitex: Jacob Aizikowitz, Israel Roth, Reuven Sherwin
Xeikon: Anthony Porter
Xerox: Steve Strasen

Prior work

While PPML as a standardized data format is new, the technology of variable data printing (VDP)
is not.

PPML concepts were largely contributed by skilled developers of established VDP products from
several members of PODi, including:

• Agfa variable data machines and Personalizer X software

• Barco’s Book Ticket Format (BTF) and Imposition Templates for PrintStreamer

• Indigo™ Yours Truly™ Personalization® architecture, SNAP® personalization software
and software applications

• Pageflex’s MPower variable data composition software, based on the NuDoc composition
engine

• Scitex’s VI Digital Front Ends, Darwin software, and VPS™ language. Scitex is a co-founder
of PODi. Before PPML, VPS was the format that was most widely supported by third-party
applications.

• Xeikon’s “Private-I” software

PPML Specification Version 2.1 July 31, 2002

Page 122 Copyright 2002 PODi www.podi.org

Origins of PPML

PPML 1.0 grew out a combined proposal approved in July 1999 by the PPML Working Group. This
proposal was a merger of proposals from Scitex, Barco and Pageflex: Scitex, by way of its VPS
language, contributed the foundation for the basic object model, object-level granularity, and job
structure of PPML; Barco contributed the foundation for the production-centric parts of the
specification, including major work on imposition; PageFlex contributed the original proposal for
an XML-based language called PPML. NexPress contributed substantial work from its proposed
vPDF specification, and Xerox presented additional information at the July conference based on its
substantial experience with its VIPP PostScript-based variable data software.

Versions 1.5 and 2.0

Major contributors

Adobe Systems: Craig Benson
Barco: Wim Sandra
Edmond Research & Development: Paul Jones
Electronics For Imaging: Boris Aronshtam
Hewlett-Packard: Kevin Currans, Steve Hiebert
IBM: D. R. Palmer, Art Ford, Claudia Alimpich
Indigo: Sigal Krumer, Ouri Poupko
NexPress: Tim Donahue, David Blaszyk
Pageflex: Peter Davis
Xeikon: Marcus Delhoune, Roger Baeten
Xerox: Steve Strasen, Robert Herriot
Xmpie: Reuven Sherwin

Additional contributors

Creo (formerly Scitex and CreoScitex): Avinoam Beinglass
Electronics For Imaging: Richard Falk, Mike Robinson
Hewlett-Packard: Robert Taylor
IBM: Hitesh Bhindi
Océ: Werner Engbrocks
PrintSoft: Keith Adeney
Xerox: Jean-Yves Bouche

www.podi.org Copyright 2002 PODi Page 123

Appendix B:
Introduction to XML

The PPML data format is based on the XML (eXtensible Mark-up Language) syntax. This is
analogous to saying that XML is the programming language in which the PPML application is
written. To understand PPML, therefore, it’s helpful to have some basic knowledge of how XML
works.

Elements: In XML, data can be grouped into tagged elements, like this:

<TAG>This sentence is data of type TAG.</TAG>

Here, <TAG> is the start tag, and </TAG> is the end tag. The end tag uses the same tag name as
the start tag, but the name is preceded by a “/”. Whatever lies between the start and end tags is
considered to be of type TAG.

Nesting: Elements can be, and usually are, nested:

<TAG1>This is TAG1 text.
 <TAG2>And this is TAG2 text.</TAG2>
</TAG1>.

Note that the end tags are in the reverse order from the start tags, so that TAG2 lies entirely inside
TAG1. This means the elements are properly nested. The following would NOT be syntactically
valid because the outer tag (TAG1) is closed off while the inner tag (TAG2) is still left open:

<TAG1>This is TAG1 text.
 <TAG2>And this is TAG2 text.
</TAG1>
</TAG2>.

Elements with no content: In some cases, a tagged element will have no content between the
opening and closing tags. This can be abbreviated with a single tag that has the “/” character at
the end. In other words, <TAG/> is equivalent to <TAG></TAG>.

Attributes: Elements can specify attributes, which are properties of the particular instance of the
element. For example, element NOTE_TEXT could be defined to have the property that the color is
normally red, but I may override this in a specific instance by specifying:

<NOTE_TEXT Color="blue">This text will be blue.</NOTE_TEXT>

In this example, Color is an attribute of the element NOTE_TEXT.

Comments: Finally, comments (information which is not processed by software) can be placed in
the XML file for users who may wish to look directly at the file. Such comments are embedded
between
<!-- and --> delimiters, for instance:

<!-- This is a comment. -->

White space (returns, tabs, and spaces) are allowed within a comment.

PPML Specification Version 2.1 July 31, 2002

Page 124 Copyright 2002 PODi www.podi.org

The DTD: An XML application, such as PPML, specifies exactly which tags are defined, which
elements can (or must) exist within other elements, and what attributes and values can be specified
for each element, via a file called the Document Type Definition (DTD).

www.podi.org Copyright 2002 PODi Page 125

Appendix C:
Strings to use for
the Format attribute of SOURCE
The following are examples of the strings approved by IANA (the Internet Assigned Numbers
Authority) that are to be used in the value of the Format attribute in the SOURCE element. These
strings were developed for use in identifying the media type in a MIME stream; PPML is adopting
them by reference because they are an existing standard that is well suited to PPML needs.

Most of these strings are from
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types.

Format IANA identifier

PostScript application/postscript RFC2045, RFC2046

Encapsulated PostScript (EPS) application/postscript

PDF application/pdf

PCL application/vnd.hp-PCL

PCL XL application/vnd.hp-PCLXL

AFP application/vnd.ibm.modcap

TIFF image/tiff RFC2302

JPEG image/jpeg RFC2045, RFC2046

GIF image/gif RFC2045, RFC2046

SVG (scaleable vector
graphics)

image/svg-xml

http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

PPML Specification Version 2.1 July 31, 2002

Page 126 Copyright 2002 PODi www.podi.org

www.podi.org Copyright 2002 PODi Page 127

Appendix D:
Packaging PPML datasets for
transport using ZIP files or
removable media

D.1 Introduction

MIME and other transport methods are extremely flexible, and provide a highly generalized
interface between many kinds of systems. However, current practice often involves the simple case
of creating an entire project on one machine and physically transporting it to another machine. For
this case, a much simpler method of transport can be defined. This section describes rules for
reliably packaging a PPML dataset created on one machine for transport to another machine,
where it can be unpacked so that all references will still function as expected.

In this workflow, all related resource files are typically within a single directory tree. This practice
allows for a simple case for constructing the PPML references and packaging the project: the entire
directory may be copied to removable media such as a CD, or the directory may be packed into a
single file using compression software.

PKZIP13 is one such packing application. It is supported on many platforms (Windows, Macintosh,
Unix/Linux) and is available as open source.

The rules described here for references and file naming will allow for reliable transport of a PPML
dataset from one machine to another, and even between platforms.

PPML Consumers are not required to accept ZIP files.14 If a PPML Producer generates datasets and
ZIP packages that conform to these rules, the receiving system can use any unzipping tools to
unpack the package, and the references should work successfully.15

13 www.pkware.com
14 In the workflows where this method is intended to be used, unpacking ZIP files is a common practice.

Nonetheless, Consumers that can directly read ZIP files will offer two competitive advantages: simpler
workflow and savings of disk space. Since some datasets can be large, there can be a real advantage to
building this functionality into the Consumer.

15 In a closed, formal environment where the Producer and Consumer know each other’s systems, they are free
to use any conventions they want. However, datasets and packages that do not conform to these rules will
not transport and unpack reliably on unknown receiving systems. For portability, or if the receiving system is
unknown when the dataset is generated, the rules defined in this section should be obeyed.

PPML Specification Version 2.1 July 31, 2002

Page 128 Copyright 2002 PODi www.podi.org

D.2 Requirements

This appendix specifies rules for naming the PPML file and its attachment files. It also prescribes the
relative locations of such files. These rules implement the following requirements.

When the files are extracted in a single operation from the ZIP file on the target platform or copied
from removable media to directory on a target platform:

1) The PPML file can be located easily

2) Each URI in the PPML file references the intended attachment file using the target
platform's software for mapping a URI to a specific file.

Note that these rules describe the characteristics of the files on the target platform after they are
extracted from a ZIP file or copied from a removable media. The files on the source platform are
likely to have similar characteristics, in order to simplify the zipping or copying operation, but they
are not required to adhere to these rules.

The following terms are used in this appendix:

Conforming Package: all the files and directories in a ZIP file or on a removable media.

Conforming Package Extraction: all the files and directories on a Consumer’s platform
that come from a single Conforming Package, either by extracting them from a ZIP file, or by
copying them from a removable media.

The rules are phrased in terms of the Conforming Package Extraction because it is easier to specify
the files and directories on the Consumer’s platform than to specify the representation of files and
directories on a ZIP file. It is best to treat a ZIP file as a black box with add and extract APIs. The
extract API produces the Conforming Package Extraction. A rule about a Conforming Package
Extraction implies what must be in a Conforming Package in order for the ZIP extract operation or
the removable-media copy operation to work properly.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 129

D.3 Rules for Files and Directories

1. Directory Structure: A Conforming Package Extraction shall contain a single top level
directory. All files and directories in the Conforming Package Extraction shall reside in that
top-level directory, or in directories under it.

2. PPML File: A Conforming Package Extraction shall contain only one PPML file, whose
name must conform to the rules in this Appendix, and whose suffix is “.ppml”. The PPML
file shall reside in the top-level directory.

3. Character set: Each character of a file name or directory name within a Conforming
Package Extraction must be a printable character from ISO 696 IRV (i.e. those in the range
32 to 126 inclusive) that is not one of the nine characters in the table below.16

34 (‘"’ double quote) 42 (‘*’ asterisk) 47 (‘/’ slash)

58 (‘:’ colon) 60 (‘<’ less-than) 62 (‘>’ greater-than)

63 (‘?’ question mark) 92 (‘\’ backslash) 124 (‘|’ vertical bar)

The first character of a file name or directory name must not be ‘.’ (dot). This is due to
limitations of some Windows systems.

4. Case sensitivity: Each directory within a Conforming Package Extraction on a case-
sensitive platform (i.e. the top-level directory or any directories under it) shall not contain
multiple files whose names are identical except for the case of one or more letters. For
instance, a directory cannot contain both test.eps and TEST.EPS, or test.eps and
Test.eps. Also, a directory cannot contain both Foo and foo, where each is either a
directory or file.

Because the above rule indirectly applies to a Conforming Package, the above rule implies
that on a case-insensitive platform a Conforming Package Extraction contains exactly the
same files and directories that are in the Conforming Package, e.g.. there won’t be both a
test.eps and Test.eps. Note: a Producer creates a Conforming Package without
the knowledge about whether the Consumer is on a case-sensitive or case-insensitive
platform.

See rule 2 in the section entitled “Rules for URIs”. It gives the corresponding rule for case
sensitivity of URIs that reference files whose names are governed by this rule.

5. Length restrictions:

a. The maximum length for each name of a file or directory in a Conforming
Package Extraction shall be 31 characters, including extension.17 Example: the

16 These characters are excluded from PPML filenames because Windows does not allow them in filenames.

Windows is the most restrictive. Mac OS9 excludes the colon “:” and Linux excludes only “/”, both of
which are excluded from Windows filenames.

17 Filenames in Macintosh OS9 are limited to 31 characters in length.

PPML Specification Version 2.1 July 31, 2002

Page 130 Copyright 2002 PODi www.podi.org

name of the PPML file in the package must be limited to 26 characters plus 5
characters for “.ppml”.

b. The maximum length for each path name of a file in a Conforming Package
Extraction (relative to the top-level directory of the Conforming Package Extraction)
shall be 127 characters, including slashes, period and file suffix.

Windows is the motivation for this constraint. On Windows the maximum length of
an absolute path is 254 characters; every file created in a Windows directory
must result in an absolute path no more than 254 characters long, or the file
creation will fail. Arbitrarily dividing 254 in half allows:

• 127 characters for the complete pathname of the top-level directory of the
Conforming Package Extension, e.g. “c:/projects/projectFoo”.

• 127 characters for the path of each file in the Conforming Package
Extension relative to its top-level directory, e.g. “images/sunset.gif”
is the relative path of the file (limit 127 characters) and
“c:/projects/projectFoo/images/sunset.gif” is the complete
pathname of the file (limit 254 characters).

These limits are considered reasonable for expected production needs, and they
guarantee that any package can be unpacked on the most restrictive system
(Windows), into any directory whose pathname doesn’t exceed 127 characters,
and the resulting absolute paths will never exceed the 254 character limit.18

D.4 Rules for URIs

1. Allowed URIs: URIs in the PPML file of a Conforming Package Extraction (e.g.
EXTERNAL_DATA) shall meet the requirements of either rel_path or AbsoluteURI
in RFC 2396. Examples of a rel_path URI are: “myfile.eps”, “./myfile.eps”
and “images/myfile.eps”. (Note that URIs use slashes, not backslashes.) Examples of
an AbsoluteURI URI are "http://foo.com/test.eps" and
"ftp://ftp.foo.com/test.eps".

Each rel_path URI must reference a file that is within the Conforming Package
Extraction.

If absolute URIs are used, it is the responsibility of the Producer and Consumer to ensure
that the Consumer can access all referenced data – it is not a function of this packaging
specification. For instance, to access http://foo.com/test.eps, the Consumer must have
HTTP access.

This rule prohibits abs_path URIs (e.g. “/working/test1/test2.eps”) and platform
centric URIs (e.g. “file:///c:foo/bar.gif”).

18 It is the responsibility of the person or program that picks the location of the top-level directory to ensure that

the target directory’s pathname is 127 characters or less. Again, this issue only exists on Windows systems;
other systems have no practical limit, in the simple environments for which this specification is intended.

http://foo.com/test.eps

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 131

2. Preserve case: For each letter in a filename or directory of a Conforming Package
Extraction, the corresponding letter in its referencing URI (in the PPML file) must be
identical, including case. For example, file “images/Foo.gif” must be referenced in the
URI as “images/Foo.gif” and not as “images/foo.gif”, “Images/foo.gif” or
“IMAGES/FOO.GIF”. This rule ensures that each file in Conforming Package Extraction on
a case-sensitive platform, such as Unix/Linux, can be referenced by its corresponding URI.

3. Use Escape Characters: According to RFC 2396, certain characters must not appear
directly within a URI. Instead the character must be escaped by using a “%” followed the
two digit hex value of the character. For example, the rel_path URI that references the
file "first time" would be "first%20time" where 0x20 is the value of the space
character. The excluded characters for the abs_path portion of the URI are the 10
characters space, “#”, “%”, “;”, “[“, “]”, “^”, “'“,“{“ or “}”. For the first segment
of the rel_path URI (called rel_segment), the excluded characters are the same
except that the “:” is an excluded character and the “;” is not. See RFC 2396 for the full
grammar.

If a URI in a PPML file of a Conforming Package Extraction references a file whose name
includes characters that cannot be directly represented in a URI as described above, then
each such character must be escaped as described above.

PPML Specification Version 2.1 July 31, 2002

Page 132 Copyright 2002 PODi www.podi.org

D.5 Example

The following example shows a simple PPML dataset conforming to these rules: a PPML file that
references three objects. Shown below are:

1. The content of the PPML file, with the URIs highlighted.

2. A Windows directory listing of the entire dataset: the PPML file and its three referenced files.

3. A directory listing of a ZIP file created from this dataset.

The highlighting in these listings is not significant; it only draws attention to relevant information.

D.5.1 PPML file
<?xml version="1.0" encoding="UTF-8"?>
<! DOCTYPE PPML PUBLIC
 "-//PODi//DTD PPML 2.00//EN" "http://www.podi.org/ppml/ppml200.dtd">
<PPML Creator="Test">

<DOCUMENT_SET Label="URI example">
<DOCUMENT Dimensions="594 840">

<PAGE Label="Page 1">
<MARK Position="0 800">

<VIEW/>
<OBJECT Position="0 0">

<SOURCE Format="application/postscript" Dimensions="40 40">
<EXTERNAL_DATA Src="object-1.eps"/>

</SOURCE>
<VIEW/>

</OBJECT>
 </MARK>
 <MARK Position="50 800">
 <VIEW/>
 <OBJECT Position="0 0">
 <SOURCE Format="application/postscript" Dimensions="40 40">

<EXTERNAL_DATA Src="object-2.eps"/>
 </SOURCE>
 <VIEW/>
 </OBJECT>
 </MARK>
 <MARK Position="100 800">
 <VIEW/>
 <OBJECT Position="0 0">
 <SOURCE Format="application/postscript" Dimensions="40 40">

<EXTERNAL_DATA Src="images/object-1.eps"/>
 </SOURCE>
 <VIEW/>
 </OBJECT>
 </MARK>
 </PAGE>
 </DOCUMENT>

</DOCUMENT_SET>
</PPML>

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 133

D.5.2 Windows directory listing of the files to be packaged
Directory of E:\PPML
URIS~1 PPM 873 08-22-01 1:35p URIs.ppml
IMAGES <DIR> 08-22-01 1:42p images
OBJECT-1 EPS 190,677 10-18-00 10:13a object-1.eps
OBJECT-2 EPS 37,122 10-17-00 8:14a object-2.eps

Directory of E:\PPML\images
OBJECT-1 EPS 193,366 10-16-00 1:39p object-1.eps

Note that the entire project, including the PPML file itself, was created within the directory E:\PPML,
but that directory names never appear in the relative URIs in the PPML. In fact the project could
have been created in any directory on any drive, and the PPML code and the ZIP package would
look the same as shown here, because both the PPML and the ZIP package use relative locations.

D.5.3 Directory listing of conforming ZIP file
PKZIP(R) Version 2.50 Compression Utility for Windows 95/NT 4-15-1998
 Viewing .ZIP: URItest.zip

 Length Method Size Ratio Name
 ------ ------ ----- ----- ----
 873 DeflatN 383 56.2% URIs.ppml
 0 Stored 0 0.0% images/
 190677 DeflatN 62047 67.5% object-1.eps
 37122 DeflatN 14145 61.9% object-2.eps
 193366 DeflatN 62483 67.7% images/object-1.eps
 ------ ------ ----- ----
 422038 139058 67.1% 5

PPML Specification Version 2.1 July 31, 2002

Page 134 Copyright 2002 PODi www.podi.org

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 135

Appendix E:
Job ticketing formats

E.1 Introduction

As noted in section 4.8, “the PPML language itself does not specify any particular ticket data
format.” Instead, a PPML TICKET element identifies a ticket datum (e.g. a file) that contains
named objects, and any object can be referenced from within the PPML stream by providing its
name in a TICKET_REF element. This can be done without any knowledge of the data format or
internal workings of the ticket file; the Producer only needs to know what name to use for each
function in the ticket via the ExtIDRef attribute.

This allows Producers and Consumers to implement PPML job ticketing at whatever technical level is
appropriate for their business environment. As an example, a Producer who has an existing
business relationship with a specific Consumer shop can use PPML Job Ticketing to support any
ticket data format they want.

E.2 Example: an arbitrary job ticket format

The following is a sample fragment of an imaginary job ticket format. It happens to be encoded in
XML, but it need not be. The only thing required of a job ticket is that it contain the ID strings that
the Producer will use in TICKET_REF elements in the accompanying PPML dataset. (The shading,
boldface and underlining shown here are used to highlight how the ID strings connect the ticket
data to the PPML stream.)

The job ticket might include these lines:
<MyTicket xmlns:"http://www.mysite.com/schema/myticket.xsd">

<Feature ID="TwoSidedLongEdge">
<ActivationCode> activation code goes here </ActivationCode>

</Feature>

<Feature ID="OneSided">
<ActivationCode> activation code goes here </ActivationCode>

</Feature>
...

Here is an example of how a dataset might access these features using TICKET_REF:
<PPML ...>

...
<TICKET_REF ExtIDRef="OneSided"/>
<DOCUMENT ...>

<PAGE ...>...</PAGE>
...

</DOCUMENT>

PPML Specification Version 2.1 July 31, 2002

Page 136 Copyright 2002 PODi www.podi.org

<TICKET_REF ExtIDRef="TwoSidedLongEdge"/>
<DOCUMENT...>

<PAGE ...>...</PAGE>
...

For this example, the location and meaning of the TICKET_REFs is not important; they may occur
at various points in the PPML stream. The important thing to understand is that the connection
between TICKET content and TICKET_REF is accomplished through the ID strings that occur in
both places.

E.3 JDF as an instance of a PPML Job Ticket

E.3.1 Introduction

JDF (“Job Definition Format,” http://www.cip4.org) is an industry-standard data format for
electronic job ticketing. It provides a device-independent way to describe the finished result of the
printing process, such as an 8-page stapled booklet, and the production processes that may be
used to produce it. JDF syntax is recommended for interoperable job tickets, especially for
graphic arts applications. See the PPML Job Ticketing specification for details.

E.3.2 Example encoded in JDF

Here is an example of how the same job ticket information might be encoded in JDF:
<LayoutPreparationParams ID=.... >

...
<LayoutPreparationParamsUpdate UpdateID="OneSided"

Sides="OneSidedFront"/>
<LayoutPreparationParamsUpdate UpdateID="TwoSidedLongEdge"

Sides="TwoSidedFlipY"/>
...

</LayoutPreparationParams>

In the PPML stream, this ticket would be referenced in exactly the same way as shown above:
<PPML ...>

...
<TICKET_REF ExtIDRef="OneSided"/>
<DOCUMENT ...>

<PAGE ...>...</PAGE>
...

</DOCUMENT>

<TICKET_REF ExtIDRef="TwoSidedLongEdge"/>
<DOCUMENT...>

<PAGE ...>...</PAGE>
...

In these examples the PPML stream is identical, even though the ticket data formats are different.
The basic mechanism of the PPML job ticket scheme is that the ExtIDRef attributes identify the
pieces of the job ticket file that are being requested at that point in the dataset.

http://www.cip4.org/

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 137

Appendix F: Embedding text in a
PPML stream

F.1 Introduction

Page content in a PPML Object can be expressed as either EXTERNAL_DATA or
INTERNAL_DATA. This appendix describes the relative advantages of embedding text in a PPML
dataset using INTERNAL_DATA, in particular the advantages of using Scaleable Vector Graphics
(SVG) as a method of encoding the text.

As a baseline for comparison, this appendix begins by reviewing the advantages of
EXTERNAL_DATA. The relative advantages of INTERNAL_DATA are then discussed, and finally
the additional advantages of SVG are presented.

F.2 Advantages and Applications of External Data

For reusable content objects, EXTERNAL_DATA is commonly used, as in this example:
<OBJECT Position="0 0">

<SOURCE Format="application/postscript" Dimensions="400 50">
<EXTERNAL_DATA Src="MyCarPhoto.eps"/>

</SOURCE>
<VIEW/>

</OBJECT>

EXTERNAL_DATA offers several advantages that have substantial benefits in some applications:

• Files referenced by EXTERNAL_DATA can contain binary content; INTERNAL_DATA is
restricted to XML content, which cannot be binary. This allows using any content format (e.g.
images and PDF) efficiently.

• EXTERNAL_DATA allows a content object to be generated by any software application, yet it
can be referenced by any PPML Producer.

• EXTERNAL_DATA allows a content object to be created asynchronously, before creation of the
PPML dataset that references it.

PPML Specification Version 2.1 July 31, 2002

Page 138 Copyright 2002 PODi www.podi.org

F.3 Advantages and Applications of Internal Data

For applications that involve “disposable text” (such as the name and address on an Instance
Document), INTERNAL_DATA allows embedding the text directly into the PPML stream, as in this
example, which uses PostScript encoding to typeset a line in 12 point Futura:

<OBJECT Position="72 500">
<SOURCE Format="application/postscript" Dimensions="400 50">

<INTERNAL_DATA>
/Futura findfont 12 scalefont setfont
(Dear Jan Watkins,) show

</INTERNAL_DATA>
</SOURCE>
<VIEW/>

</OBJECT>

INTERNAL_DATA offers different advantages from EXTERNAL_DATA:

• The entire print job can be expressed in a single stream, encoded in XML. This
was one of the original requirements for PPML – the ability to encode everything in a single
stream. Some applications absolutely require this, so that when the same dataset is reprinted
later, there is no question that the job will run the same.

• Avoids the need for many separate files. By its nature, disposable text is used only
once, so placing it into a file that’s used only once is not efficient. High-volume print streams
can have thousands of pages, each of which might have several content objects; encoding
each one into a separate file can be extremely inefficient. Creating and consuming thousands
of separate files involve substantial overhead for both the Producer and the Consumer.
INTERNAL_DATA allows bundling the content into a single stream.

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 139

F.4 Additional advantages of SVG

SVG (www.svg.org) is an accepted W3C recommendation (http://www.w3.org/TR/SVG/) that
provides a way of describing text and vector graphics in XML. The following SVG example does
the same thing as the preceding PostScript example, but all properties and content are expressed
using XML constructs:

<OBJECT Position="72 500">
<SOURCE Format="image/svg-xml" Dimensions="400 50">

<INTERNAL_DATA>
<svg:svg xmlns:svg=... width="400" height="50">

<svg:text x="0" y="0" font-size="12"
font-family="Futura-Book" fill="black">
Dear Jan Watkins,

</svg:text>
</svg:svg>

</INTERNAL_DATA>
</SOURCE>
<VIEW/>

</OBJECT>

SVG provides a way for PPML content data to gain all the advantages of other XML content:

• Parse and validate the document content using XML tools. Encoding the content
data itself in XML means the entire dataset, including the variable content, can be checked
using the same XML tools that check the PPML itself – and in the same single step in the
workflow.

• Locate and extract document content using XML tools. PPML content encoded in
SVG can be extracted from a dataset using generic XML tools, which means the output of a
PPML Producer can be used in many ways. For instance, it can be cataloged, archived, or
added to a database, which in turn would make it available for a variety of other applications:
archiving, indexing, searching.

As use of PPML expands into applications that involve substantial quantities of disposable text, as
well as reusable content, it is expected that there will be increased use of INTERNAL_DATA in
general, and SVG in particular.

http://www.svg.org/
http://www.w3.org/TR/SVG/

PPML Specification Version 2.1 July 31, 2002

Page 140 Copyright 2002 PODi www.podi.org

Change History

Version 1.0, March 15, 2000

Initial release.

Version 1.01, May 18, 2000:

• Inside front cover: modify text and email address related to reader participation.

• 1.2 Organization of this Document: add “and Marks”

• 2.1.4 DTD: Add reference to the official online version of the PPML DTD.

• 4.4.3 (attributes of DOCUMENT and PAGE): reposition Label attribute in the table.
(This does not affect functionality.)

• 5.3.3 Attributes of MARK,
new 5.5.3 Implementation Note: New definition of the Position attribute.

• 5.7.1 Description of OBJECT element: add a second paragraph, clarifying intent
related to the change in 5.5.3 above.

• 5.7.3 Attributes of OBJECT: see 5.3.3 above.

• 5.8.2 Model of SOURCE: add EXTERNAL_DATA_ARRAY, consistent with contexts listed in
5.10.3.

• Appendix 3: add SVG.

• Reference card: update per the above; document the list of allowed attribute values where
appropriate, and show which choice is the default.

Version 1.02, December 14, 2000:

New features and substantial additions

• Add support for multi-page source files:

• Created two new elements, SEGMENT_ARRAY (section 5.17) and SEGMENT_REF (section
5.18);

• Added SEGMENT_REF to the model for MARK, and added SEGMENT_ARRAY to the model
for PPML, Job [Document Set in version 2.x], Document, and Page.

• Illustrations of how PPML content objects are created and placed on a page:

• Added new section 5.19 Definition of PPML Extent Boxes

• Added section 5.20 Notes on Transforming, Clipping and Positioning

• Imaging model re transparency & overprint: Modify the following sections regarding
the interaction of marks on a page:

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 141

5.2 A Page contains Marks
5.3.1 The MARK Element – Description
9.1 Transparency / overprinting

Additional changes and clarifications

• 2.1.4 DTD: Add PUBLIC identifier; change statement regarding DTDs stored on the Web.

• 2.2 Non-XML Data: remove sentence about a possible separate specification regarding
transport issues.

• 5.8.1 SOURCE: Add paragraph regarding non-content data, such as binary previews on
Windows EPS files.

• 5.10.3 EXTERNAL_DATA_ARRAY: Clarify minimum value of Index attribute.

• 6.6.3 IMPOSITION Position attribute: Declare that the imposition structure does not
include any trim or fold marks, so the marks do not affect position on the sheet,

• 6.8.1 SIGNATURE description: Explain CELL positioning and rotation

• 6.9 The CELL Element: Expand description (6.9.1), add rotation example (6.9.7), add
“PageOrder <1” case at end of 6.9.5.

• 6.10 The HOR_TRIM_MARKS Element: Add illustration of position of trim marks; clarify
wording of mark suppression in the “touching pages” case.

• Scope of OCCURRENCE_REF in sheet marks: State in 6.10.1, 6.11.1, 6.14.1, 6.15.1
that the scope of a sheet mark’s Occurrence Ref must be at least as high as the enclosing
IMPOSITION.

• 6.14.1, HOR_FOLD_MARKS: clarify suppression of trim marks near fold marks.

• 8.2.3, Attributes of FONT: Add Format attribute. Also, change the Name attribute to
FontName and add a descriptive note about its intent. (“Name” in other PPML elements is
merely an arbitrary identifying string; in the FONT element, it denotes the actual name of the
font, e.g. Helvetica-BoldOblique. Also, add Format attribute.

• 8.5 SUPPLIED_RESOURCE:

• 8.5.1 Description: stipulate that the resource must be referenced to be used; stipulate that
resources can be processed in any order.

• 8.5.3 Attributes: add required ResourceName attribute; clarify that the Name attribute is
for use in SUPPLIED_RESOURCE_REF; Type attribute has only two possible values (Font
or ProcSet); add definition of ProcSet.

PPML Specification Version 2.1 July 31, 2002

Page 142 Copyright 2002 PODi www.podi.org

Version 1.5, May 31, 2001:

New features and substantial additions

• Conformance subsets

• Add new Chapter 10, Conformance Subsets, particularly Section 10.2, Graphic Arts subset,
with full definition of file formats and their constraints.

• Add new CONFORMANCE element (Section 4.7) and ResourcesIncluded attribute on
PPML.

• Page Dimension information: For non-imposing Consumers (see below), add new
PAGE_DESIGN element (section 4.6); add corresponding text in PAGE_LAYOUT; deprecate
the use of the Dimensions attribute on DOCUMENT and PAGE.

Additional changes and clarifications

• Imposing and non-imposing Consumers: clarify the term “imposition” as used in this
specification (section 6.1.1) and update the boxed note in Section 6.1 regarding what features
a Consumer may or may not support; add SheetLayoutIncluded attribute on PPML.

• Enhanced REPEAT functionality for imposing Consumers: in the PageOrder attribute of
CELL, change the counter s to refer to sheets (not signatures) and add document counter d.

Errata in Version 1.5

• Copyright date on table of contents page should be 2001

• DTD information in section 2.1.4 should refer to version 1.5

• Model for PPML:
• Section 4.2.2 should say CONFORMANCE?, not CONFORMANCE_LEVEL?
• Reference Card’s model should say CONFORMANCE? not CONFORMANCE

Version 2.0, April 4, 2002:

New features and substantial additions

• PPML Architecture

• Add new section 1.2, PPML Architecture, detailing and extending the potential uses
and applications of future versions of PPML

• Job ticketing

• Create separate spec document PPML Job Ticketing

• New section 3.4: Add section for job ticketing in Definitions section

• New sections 4.8 (TICKET) and 4.9 (TICKET_REF)

July 31, 2002 PPML Specification Version 2.1

www.podi.org Copyright 2002 PODi Page 143

• Add TICKET_REF to models for PPML, JOB/DOCUMENT_SET, DOCUMENT, PAGE,
MARK, REUSABLE_OBJECT and OCCURRENCE_LIST

• Add TICKET to model for PPML

• Change model for INTERNAL_DATA to ANY to accept job ticket data as content; change
EXTERNAL_DATA Description and Context text to include use of EXTERNAL_DATA with
TICKET.

• Refine wording of section 10.2 (Graphic Arts subset) regarding job ticketing

• Add Appendix E, Job Ticketing Formats to this document

• Packaging jobs for transport:

• Add Appendix D, Packaging (incorporates Tech Note TN1 into the specification)

• Schema support

• Rewrite section 2.1.4, “DTD and Schema”

• Created XML schema for PPML 2.0

Additional changes and clarifications

• Correct all errata from Version 1.5 (see above)

• Improve accuracy of CDATA footnote in section 2.2, NonXML Data

• Deprecate JOB in favor of DOCUMENT_SET (section 4.3 and throughout document)
This change was modified in version 2.1 – see below

• EXTERNAL_DATA, EXTERNAL_DATA_ARRAY, SEGMENT_ARRAY: Add Checksum and
ChecksumType attributes

• SUPPLIED_RESOURCE: change model to INTERNAL_DATA | EXTERNAL_DATA; deprecate
the Src attribute

• New Appendix F, Embedding Text

• Conformance subset strings (section 4.7): add instructions on how to submit strings to PODi

• Update Appendix A, Acknowledgements

• Add missing Level attribute to table in 4.7.3

• Remove duplicated section 5.20.2 (illustration of transformation and clipping)

PPML Specification Version 2.1 July 31, 2002

Page 144 Copyright 2002 PODi www.podi.org

Version 2.1, July 31, 2002:

• Refinements to Job Ticketing of page content elements

• Remove TICKET_REF from between content elements inside PAGE. (See model for Page,
section 4.5.2.) Thus, the smallest level to which TICKET_REF applies is an entire Page.

• Add TICKET_SET (an aggregation of TICKET_REFs, for convenience):

o Define TICKET_SET in new section 4.10

o Add to model for PPML, DOCUMENT_SET, DOCUMENT, PAGE

• Definition of Reusable Objects:

o In section 3.4, “Terms related to PPML Job Ticketing,” add definition of Ticket State

o Add new element TICKET_STATE (section 4.11) with description of Ticket State
concept.

o In Reusable Object definitions, move all TICKET_REFs down to the lowest level
(the individual OCCURRENCE) and thus remove all inheritance of ticket info from
individual page content elements. See section 4.11 for discussion.

Specifically, remove TICKET_REF from model for REUSABLE_OBJECT and
OCCURRENCE_LIST and add TICKET_STATE to model for OCCURRENCE.

• Additional changes

• JOB vs DOCUMENT_SET: un-deprecate JOB (section 4.3 and throughout). (Keep
DOCUMENT_SET, but allow JOB as a synonym. (This change avoids invalidating existing
datasets that use JOB.)

• Clerical changes, including: remove “::” notation in “PAGE_DESIGN::TrimBox”
(section 4.6.5); correct the name of job ticketing spec in front matter; fix multiplication
signs in attribute tables in chapter 6

PPML (Personalized Print Markup Language) Reference Card http://www.podi.org Version 2.1 • July 31, 2002
 2002 PODi, the Digital Printing initiative See legend at bottom

Structure
PagePagePagePage ELEMENT ELEMENT ELEMENT ELEMENT ATTRIBUTESATTRIBUTESATTRIBUTESATTRIBUTES CONTAINSCONTAINSCONTAINSCONTAINS
15 PPML PPML PPML PPML

The top level (“dataset” level) which
encompasses all others

Label, Creator, CreationDate,
ResourcesIncluded,
SheetLayoutIncluded

(CONFORMANCE*, TICKET?, SUPPLIED_RESOURCES?,
REQUIRED_RESOURCES?, IMPOSITION*, (PRINT_LAYOUT |
PAGE_DESIGN)?, PRIVATE_INFO*, (TICKET_REF | REUSABLE_OBJECT
| SEGMENT_ARRAY | (DOCUMENT_SET | JOB))*)

16 DOCUMENT_SET (synonym: JOB)DOCUMENT_SET (synonym: JOB)DOCUMENT_SET (synonym: JOB)DOCUMENT_SET (synonym: JOB)
A set of documents

Label, DocumentCount (SUPPLIED_RESOURCES?, REQUIRED_RESOURCES?,
IMPOSITION*, (PRINT_LAYOUT | PAGE_DESIGN)?, PRIVATE_INFO*,
(TICKET_REF | REUSABLE_OBJECT | SEGMENT_ARRAY | DOCUMENT)+)

17 DOCUMENTDOCUMENTDOCUMENTDOCUMENT
A single Instance Document (one or more Pages)

Label, Dimensions, PageCount,
DocumentCopies

(SUPPLIED_RESOURCES?, REQUIRED_RESOURCES?,
PAGE_DESIGN?, PRIVATE_INFO*,
(TICKET_REF | REUSABLE_OBJECT | SEGMENT_ARRAY | PAGE)+)

18 PAGEPAGEPAGEPAGE Label, Dimensions (SUPPLIED_RESOURCES?, REQUIRED_RESOURCES?, PAGE_DESIGN?,
PRIVATE_INFO*, TICKET_REF*,
(REUSABLE_OBJECT | SEGMENT_ARRAY | MARK)*)

19 PAGE_DESIGNPAGE_DESIGNPAGE_DESIGNPAGE_DESIGN TrimBox, BleedBox EMPTY
21 CONFORMANCECONFORMANCECONFORMANCECONFORMANCE Subset, Level EMPTY

22 TICKETTICKETTICKETTICKET Format (EXTERNAL_DATA | INTERNAL_DATA)
24 TICKET_REFTICKET_REFTICKET_REFTICKET_REF ExtIDRef, Ref EMPTY
29 TICKET_SETTICKET_SETTICKET_SETTICKET_SET ID TICKET_REF*
30 TICKET_STATETICKET_STATETICKET_STATETICKET_STATE None TICKET_REF*

Page Content
34 MARK MARK MARK MARK Places content on a Page Position ((VIEW?, OBJECT+) | OCCURRENCE_REF | SEGMENT_REF)

36 VIEWVIEWVIEWVIEW None (TRANSFORM?, CLIP_RECT?)
37 TRANSFORMTRANSFORMTRANSFORMTRANSFORM Matrix EMPTY
38 CLIP_RECTCLIP_RECTCLIP_RECTCLIP_RECT Rectangle (number x 4) EMPTY

39 OBJECTOBJECTOBJECTOBJECT
A view of a source element

Position (within the enclosing
element’s coordinate space)

(SOURCE, VIEW?)

40 SOURCE SOURCE SOURCE SOURCE One or more content data items Format, Dimensions, ClippingBox ((INTERNAL_DATA | EXTERNAL_DATA)+ | EXTERNAL_DATA_ARRAY)
42 EXTERNAL_DATA EXTERNAL_DATA EXTERNAL_DATA EXTERNAL_DATA Points to an external

data source (file, URL, etc)
Src (URI), Checksum, ChecksumType,
SourceUsage

EMPTY
SourceUsage attribute = Single | Multiple | Unknown

43 EXTERNAL_DATA_ARRAY EXTERNAL_DATA_ARRAY EXTERNAL_DATA_ARRAY EXTERNAL_DATA_ARRAY Points to a multi-
segment external data source

Src (URI), Checksum, ChecksumType,
Index, IndexUsage

EMPTY
IndexUsage attribute = Single | Multiple | Unknown

44 INTERNAL_DATA INTERNAL_DATA INTERNAL_DATA INTERNAL_DATA In-stream content data Label, Creator, CharacterSet, Encoding (#PCDATA)

45 REUSABLE_OBJECT REUSABLE_OBJECT REUSABLE_OBJECT REUSABLE_OBJECT A content object that will be
used repeatedly, & how it will be viewed

None (OBJECT+, VIEW?, OCCURRENCE_LIST)

46 OCCURRENCE_LIST OCCURRENCE_LIST OCCURRENCE_LIST OCCURRENCE_LIST None (OCCURRENCE)+
47 OCCURRENCEOCCURRENCEOCCURRENCEOCCURRENCE
One View of a Reusable Object,
with hints about frequency of use

Name, Environment, Scope,
Overwrite, Weight

(VIEW?, TICKET_STATE*)

51 OCCURRENCE_REF OCCURRENCE_REF OCCURRENCE_REF OCCURRENCE_REF Calls up a stored Occurrence
for printing on a Page or Sheet

Ref (the name of the saved Occurrence),
Environment

EMPTY

54 SEGMENT_ARRAY SEGMENT_ARRAY SEGMENT_ARRAY SEGMENT_ARRAY
Creates a collection of reusable objects from a
single source file

ClippingBox, Dimensions, Environment, Format,
IndexRange, Name, Overwrite, Scope, Src (URI),
Checksum, ChecksumType, Weight

(VIEW?, (EXTERNAL_DATA | INTERNAL_DATA)?)

56 SEGMENT_REF SEGMENT_REF SEGMENT_REF SEGMENT_REF Calls up a member of a
Segment Array for printing

Environment, Index, Ref EMPTY

Print Layout (page layout, imposition)
80 PRINT_LAYOUT PRINT_LAYOUT PRINT_LAYOUT PRINT_LAYOUT Ncopies, Collate (Document | Job | No) (PAGE_LAYOUT, SHEET_LAYOUT?)
81 PAGE_LAYOUT PAGE_LAYOUT PAGE_LAYOUT PAGE_LAYOUT page size TrimBox, BleedBox, BoundingBox EMPTY
83 SHEET_LAYOUT SHEET_LAYOUT SHEET_LAYOUT SHEET_LAYOUT

sheet size, marks
Hsize, Vsize,
GangDocuments (Yes | No)

(SHEET_MARK |
(PAGE_LAYOUT?, (IMPOSITION | IMPOSITION_REF)))*

84 SHEET_MARKSHEET_MARKSHEET_MARKSHEET_MARK Position, Face (Up | Dn) (OCCURRENCE_REF)

85 IMPOSITION IMPOSITION IMPOSITION IMPOSITION defines rules for
Step & Repeat, and how to distribute
pages in multi-sheet docs

Name, Scope, Environment,
Position & Rotation (of all Signatures in this
imposition)

(SIGNATURE | REPEAT)

(All Rotation attributes = 0 | 90 | 180 | 270)

87 IMPOSITION_REF IMPOSITION_REF IMPOSITION_REF IMPOSITION_REF
Recalls a stored Imposition

Name, Environment; Position & Rotation
(overriding original attributes)

EMPTY

88 SIGNATURE SIGNATURE SIGNATURE SIGNATURE assigns Pages of a
Document to cell positions on a sheet;
incl. cell spacing & marks

Nrows, Ncols, PageCount (CELL+, HOR_TRIM_MARKS?, VER_TRIM_MARKS?,
HOR_GUTTER*, VER_GUTTER*,
HOR_FOLD_MARKS*, VER_FOLD_MARKS*)

90 CELL CELL CELL CELL A single page position in a
Signature, on the face-up or -down
side of the sheet

Row, Col, Face (Up | Dn), Rotation,
PageOrder (integer or expression)

EMPTY

95 HOR_TRIM_MARKS HOR_TRIM_MARKS HOR_TRIM_MARKS HOR_TRIM_MARKS marks on a
Signature at Cell’s trim size

MarkDist, AllowOnPage (Yes | No) (OCCURRENCE_REF)

97 VER_TRIM_MARKS VER_TRIM_MARKS VER_TRIM_MARKS VER_TRIM_MARKS marks on a
Signature at Cell’s trim size

MarkDist, AllowOnPage (Yes | No) (OCCURRENCE_REF)

98 HOR_GUTTER HOR_GUTTER HOR_GUTTER HOR_GUTTER space to add between space to add between space to add between space to add between
rows i i i in a Signaturen a Signaturen a Signaturen a Signature

BetweenRows (range of rows),

Distance
EMPTY

100 VER_GUTTER VER_GUTTER VER_GUTTER VER_GUTTER space to add
between columns in a Signature

BetweenCols (range of columns), Distance EMPTY

101 HOR_FOLD_MARKS HOR_FOLD_MARKS HOR_FOLD_MARKS HOR_FOLD_MARKS optional
marks on a fold line between rows

BetweenRows (row numbers), MarkDist (OCCURRENCE_REF)

102 VER_FOLD_MARKS VER_FOLD_MARKS VER_FOLD_MARKS VER_FOLD_MARKS optional
marks on fold line between cols

BetweenCols (column numbers), MarkDist (OCCURRENCE_REF)

103 REPEATREPEATREPEATREPEAT Duplicates a
Signature on a sheet.
Note: can be nested in all three
dimensions.

Direction (Ver | Hor | Stack),
Action (Duplicate | Increment),
Order (Ascending | Descending),
Count, Spacing, SpacingMethod

(REPEAT | SIGNATURE)

(SpacingMethod attribute = Gap | Offset)

Production Specs
108 PRIVATE_INFOPRIVATE_INFOPRIVATE_INFOPRIVATE_INFO Creator, Identifier, Encoding,

CharacterSet
(#PCDATA)

109 REQUIRED_RESOURCESREQUIRED_RESOURCESREQUIRED_RESOURCESREQUIRED_RESOURCES none (FONT*, EXTERNAL_DATA*, PROCESSOR*, SUPPLIED_RESOURCE_REF*)
110 FONTFONTFONTFONT FontName, Format EMPTY
111 PROCESSORPROCESSORPROCESSORPROCESSOR Format, Revision EMPTY
112 SUPPLIED_RESOURCESSUPPLIED_RESOURCESSUPPLIED_RESOURCESSUPPLIED_RESOURCES none (SUPPLIED_RESOURCE+)
113 SUPPLIED_RESOURCESUPPLIED_RESOURCESUPPLIED_RESOURCESUPPLIED_RESOURCE Name, ResourceName, Src (URI),

Format, Type, SubType, Scope
(INTERNAL_DATA | EXTERNAL_DATA)?
Type attribute = Font | ProcSet

114 SUPPLIED_RESOURCE_REFSUPPLIED_RESOURCE_REFSUPPLIED_RESOURCE_REFSUPPLIED_RESOURCE_REF Name EMPTY
Legend: 1. Required attributes are underlined. Strikethrough indicates nodes that are being deprecated.
2. In a list of possible values, the default (if any) is italicized, e.g. “(Single | Multiple | Unknown)”
3. Indents indicate that an element’s function is related to the unindented element above it. (The indent is only an aid to readability; it has no
significance in the PPML language.)

	Introduction
	Purpose of the PPML language
	The PPML 2.0 Architecture
	Additional potential
	Basic PPML Workflow

	Organization of this document
	Notation used in this document
	Additional resources
	Feedback

	The PPML Data Format
	XML
	Introduction to XML
	Notation for specifying optional elements
	PPML Capitalization conventions
	DTD and Schema
	Character sets

	Non-XML data
	Introduction
	External references
	Wrap the non-XML data and the XML structure, in segments, in MIME as a means of transporting the dataset in a single stream.

	Terminology and Basic Concepts
	Producers and Consumers
	Anatomy of a Personalized Print project
	Additional terminology
	Terms related to PPML Job Ticketing
	Detection of Errors

	The Structure of PPML Data
	Hierarchy, Scope, and Inheritance
	PPML is Hierarchical
	Reusable Objects; caching
	Scope

	The <PPML> Element
	Description
	Model
	Attributes
	Implementation notes

	The <DOCUMENT_SET> Element
	Description
	Model
	Attributes

	The <DOCUMENT> Element
	The <PAGE> Element
	The <PAGE_DESIGN> Element
	
	The “Trim Box”
	The “Bleed Box”

	Similarity with PAGE_LAYOUT in imposition

	The <CONFORMANCE> Element
	Description
	Model
	Attributes

	The <TICKET> element
	Model
	Attributes
	Example 1: Reference to an external job ticket file
	Example 2: Internal ticket data

	The <TICKET_REF> element
	Model
	Attributes
	Ticket inheritance between document structure elements
	Ticket inheritance in definition of reusable content:

	The <TICKET_SET> element
	The <TICKET_STATE> element
	Model
	Attributes
	Context
	Computing the current Ticket State
	Example: multiple TICKET_STATE elements in an OCCURRENCE

	The PPML page
	The PPML Coordinate System
	A Page contains Marks
	The <MARK> Element
	Description
	Model
	Attributes

	The <VIEW> Element
	The <TRANSFORM> Element
	The <CLIP_RECT> Element
	The <OBJECT> Element
	Model
	Attributes

	The <SOURCE> Element
	Context
	Dimensions and ClippingBox

	The <EXTERNAL_DATA> Element
	Description
	Model
	Attributes
	Context
	The SourceUsage attribute

	The <EXTERNAL_DATA_ARRAY> Element
	Description
	Model
	Attributes
	Context
	The IndexUsage attribute

	The <INTERNAL_DATA> Element
	Description
	Model
	Attributes

	The <REUSABLE_OBJECT> Element
	The <OCCURRENCE_LIST> Element
	Description
	Model
	Attributes
	Context

	The <OCCURRENCE> Element
	Description
	Model
	Attributes
	Context
	Policies for Name collisions
	Statistics about Reuse: the Weight attribute
	What to cache and for how long
	Strategies for Processing of Occurrences; effect of TICKET_REF
	Implementation note: Effects of imposition

	The <OCCURRENCE_REF> Element
	Description
	Model
	Attributes

	Notes on REUSABLE_OBJECTs, OCCURRENCES, Scope, and€Environment
	Scope
	Resolving Occurrence names
	Downloading reusable objects for caching for future use

	The <SEGMENT_ARRAY> element
	Description
	Model
	Attributes
	Context
	Implementation note: Effects of IndexRange and Overwrite
	Implementation note: Effects of nested scopes

	The <SEGMENT_REF> element
	Description
	Model
	Attributes

	Definition of PPML Extent Boxes
	Applying a VIEW to an Extent Box
	Combining Extent Boxes

	Notes on Transforming, Clipping and Positioning
	Self-Contained MARK Example
	1. Read the SOURCE element in the OBJECT
	2. Completing the OBJECT: VIEW the SOURCE
	3. Place the OBJECT in the MARK, and apply the MARK’s VIEW

	REUSABLE_OBJECT Example
	1. Create the OBJECT specified in the REUSABLE_OBJECT.
	2. Place the OBJECT, and apply the REUSABLE_OBJECT’s and OCCURRENCE’s VIEWs.
	3. Position the OCCURRENCE on the PAGE.

	Print Layout –�Page Layout and Imposition
	Introduction
	Imposition in personalized printing
	Overview of PPML elements for laying out the print job
	Top level elements
	Sheet layout elements
	Imposition elements
	Signature elements

	Production Marks

	The <PRINT_LAYOUT> Element
	Description
	Model
	Example
	Attributes

	The <PAGE_LAYOUT> Element
	
	The “Trim Box”
	The “Bleed Box”
	The “Bounding Box”

	Model
	Attributes

	The <SHEET_LAYOUT> Element
	Context
	Usage

	The <SHEET_MARK> Element
	Description
	Model
	Attributes
	Context
	Future considerations: variable sheet marks

	The <IMPOSITION> Element
	Description
	Model
	Attributes

	The <IMPOSITION_REF> Element
	The <SIGNATURE> Element
	Context
	PageCount applications

	The <CELL> Element
	Description
	Model
	Attributes
	Context
	Using expressions in the PageOrder attribute
	Examples
	Cell Rotation Example

	The <HOR_TRIM_MARKS> Element
	Description
	Model
	Attributes

	The <VER_TRIM_MARKS> Element
	Model
	Attributes

	The <HOR_GUTTER> Element
	The <VER_GUTTER> Element
	Model
	Attributes

	The <HOR_FOLD_MARKS> Element
	The <VER_FOLD_MARKS> Element
	The <REPEAT> Element

	Production Specifications
	Introductory remarks
	The <PRIVATE_INFO> Element

	Resources
	The <REQUIRED_RESOURCES> Element
	The Element
	The <PROCESSOR> Element
	The <SUPPLIED_RESOURCES> Element
	The <SUPPLIED_RESOURCE> Element
	The <SUPPLIED_RESOURCE_REF> Element

	Future Capabilities
	Transparency / overprinting
	Color Management
	PPML Consumer Profile

	Conformance Subsets
	Introduction
	Graphic Arts subset
	Levels
	Level 1: informal relationship, “blind exchange”
	Level 2: semi-formal, “partial blind exchange”
	Open exchange (formal relationship)

	Overview of PPML Changes
	The SOURCE element
	Job ticketing
	PRIVATE_INFO
	The ResourcesIncluded attribute

	Details of ResourcesIncluded
	Content Format Details
	Color Spaces
	PostScript
	PDF
	TIFF
	JPEG
	
	Acknowledgements
	PPML Working Group participants – version 1.0
	Prior work
	Origins of PPML
	Versions 1.5 and 2.0

	Major contributors
	Additional contributors
	
	
	Introduction to XML
	Strings to use for �the Format attribute of SOURCE
	Packaging PPML datasets for transport using ZIP files or removable media
	Introduction
	Requirements
	Rules for Files and Directories
	Rules for URIs
	Example
	PPML file
	Windows directory listing of the files to be packaged
	Directory listing of conforming ZIP file

	Job ticketing formats
	Introduction
	Example: an arbitrary job ticket format
	JDF as an instance of a PPML Job Ticket
	Introduction
	Example encoded in JDF

	Embedding text in a PPML stream
	Introduction
	Advantages and Applications of External Data
	Advantages and Applications of Internal Data
	Additional advantages of SVG

	Change History
	
	Version 1.0, March 15, 2000
	Version 1.01, May 18, 2000:
	Version 1.02, December 14, 2000:
	Version 1.5, May 31, 2001:
	Errata in Version 1.5
	Version 2.1, July 31, 2002:

